Stability Study of *Ipomoea reptans* Extract Self-Nanoemulsifying Drug Delivery System (SNEDDS) as Anti-Diabetic Therapy

Pinus Jumaryatno¹*, Lutfi Chabib¹², Farida Hayati¹, Rizki Awaluddin¹

¹Department of Pharmacy, Islamic University of Indonesia, Yogyakarta, Indonesia.
²Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia.

INTRODUCTION

Diabetes mellitus (DM) is one of the metabolic syndromes that is characterized by the excessive accumulation of blood glucose, also called as hyperglycemia, and carbohydrate, fat, and protein metabolism disorder. The antioxidant compounds on *Ipomoea reptans* possess the pharmacological activity of DM with low absorption in the systemic circulation. Stability is one of the factors that affect the safety, quality, and efficacy of the SNEDDS (Self-Nanoemulsifying Drug Delivery) dosage form. This study aimed to evaluate the stability of *Ipomoea reptans* leaf extract (IPE) SNEDDS. The IPE SNEDDS was made using capryol 90 as the oil phase, tween 20 as surfactants, and polyethylene glycol (PEG) 400 as the cosurfactant. The stability study was conducted with several physical stability tests, which were centrifugation test, heating-cooling cycle test, and freeze-thaw cycle test. The result indicated that the particle size of the IPE SNEDDS was ≤100 nm and indicated good physical stability. It can be concluded that the IPE SNEDDS possesses good stability profile.

In the previous study, the *Ipomoea reptans* leaf extract indicated the pancreatic protector activity in the streptozotocin-induced mice, which makes it considered to contains antioxidant compounds, which are β-carotene, riboflavin, vitamin A, tocopherol, 3-methoxy quercetin, 4-methoxy quercetin polyphenol, and anthocyanin (Hayati et al., 2017; Manvar and Desai, 2013). In addition, *Ipomoea reptans* leaf extract has been shown to lower blood glucose level of mice with the dose of 2.23 g/kgBW, 4.46 g/kgBW, and 8.92 g/kgBW. However, a modification of the carrier preparation is required to improve the bioavailability of the extract (Hayati et al., 2010).

Self-nano Emulsifying Drug Delivery System (SNEDDS) is a dosage form that can improve the bioavailability of lipophilic compounds that lead to an improvement of its clinical efficacy, simplify permeability of drugs, and lower the dose needed to generate clinical effects (Makadia et al., 2013; Jain et al., 2010). The stability of SNEDDS depends on the size of globules in the dispersed phase of SNEDDS. Small globules could improve the stability of SNEDDS by lowering the gravity and the Brownian motion that prevent the occurrence of creaming.

© 2018 Pinus Jumaryatno et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlikeUnported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
and flocculation (Chabib et al., 2017). In this study, the stability of the IPE SNEDDS was observed by conducting centrifugation test, heating-cooling cycle test, freeze-thaw cycle test that aims to review the physical stability and to obtain the stable IPE SNEDDS formula.

MATERIALS AND METHODS

Materials

The materials used were *Ipomoea reptans* leaf extract (obtained from Laboratorium Biologi Farmasi UII), aqua pro injection, tween 20 (Vivantis Inc.), polyethylene glycol 400 (Brataco), and capryol 90 (Gattefosse).

Methods

Extraction of *Ipomoea reptans* leaf

Post-harvest treatments were sorting (leaf only), drying at 45°C-50°C for 2-3 days, and powdered using a grinder. *Ipomoea reptans* leaf powder was extracted by maceration for 6 days using 96% ethanol (ratio 1:10), and remaceration for 6 days with the same solvent. The viscous extract was obtained by evaporating the solvent using a rotary evaporator with a temperature of 60°C (Hayati et al., 2015).

Formulation of the *Ipomoea reptans* leaf extract (IPE) SNEDDS

The formula of IPE SNEDDS was modified from Chabib, who conducted the previous study (Chabib et al., 2017). The formula was presented in table 1.

<table>
<thead>
<tr>
<th>Material</th>
<th>Function</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPE</td>
<td>Active Ingredients</td>
<td>500 mg</td>
</tr>
<tr>
<td>Capryol 90</td>
<td>Oil phase</td>
<td>0.5 mL</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Surfactant</td>
<td>3.5 mL</td>
</tr>
<tr>
<td>PEG 400</td>
<td>Co-surfactant</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

The *Ipomoea reptans* leaf extract was weighed carefully, then it was dissolved into the oil phase (Capryol 90) until it was dissolved completely. The solution then was gradually added with the surfactant and co-surfactant and was ultrasonicated (Model 300 VT Biologics, Inc) for 2 minutes 4-7 times.

Centrifugation test

The IPE SNEDDS was diluted 100 times with aqua pro injection. Then, it was centrifugated using the centrifugator (Hanil MF 80) with speed of 3500 rpm for 30 minutes. Then, the phase separation was observed visually, the presence of phase separation indicates a difference in kinetic stability in nanoemulsion resulting in emulsion system instability, such as creaming, flocculation, cracking or coalescence (Shukla and Patel, 2010).

Heating-Cooling cycle test

The formula resulted from the centrifugation test was used in the heating-cooling cycle test. The test was conducted with six cycles at the temperature of 4°C and 40°C and stored for not less than 48 hours using Climatic Chamber (Climacell). The temperature of the stored formula was stabilized and centrifugated with speed of 3500 rpm for 15 minutes and observed visually to check the phase separation (Gupta et al., 2011).

Freeze-thaw cycle test

The formula resulted from the heating-cooling cycle test was used in the freeze-thaw cycle test. The test was conducted with six cycles at the temperature of ~20°C and 25°C and stored for not less than 48 hours using Climatic Chamber (Climacell). The formula was stabilized at normal temperature and centrifugated with speed of 3500 rpm for 15 minutes and observed visually to check the phase separation (Gupta et al., 2011).

Endurance test

The formula resulted from the freeze-thaw cycle test was used to conduct the endurance test. The formula was diluted with dilutions of 25, 50, and 100 times with aqua pro injection. Then, the change of %transmittance, polydispersity index (PDI), and particle size of the formula were evaluated using Particle Size Analyzer (Horiba Sz 100) (Gupta et al., 2011).

RESULT AND DISCUSSION

IPE SNEEDS

Ipomoea reptans leaf extract (IPE) has characteristics of concentrated extract, greenish color (Hayati et al., 2015). The SNEDDS formulation with the material ratio as table 1 consists of extract, oil phase, and surfactant. IPE SNEEDS exhibits dark color due to the formation of colloidal dispersion as in Figure 1. However, IPE SNEEDS forms an oil-in-water nanoemulsion (nanodroplet) when interacting with an aqueous medium (e.g. gastrointestinal fluid) that change the color into clear or cloudy as in Figure 2 tested durability by the effect of dilution (Yen et al., 2017).

Centrifugation test

The centrifugation test is conducted to assess the SNEDDS stability after an emulsion is formed, against the gravity force. The result of centrifugation that was shown in table 2 indicated that no phase separation occurred during the test.

<table>
<thead>
<tr>
<th>Replication</th>
<th>Centrifugation</th>
<th>Heat-Cool Cycle</th>
<th>Freeze-Thaw Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No phase separation</td>
<td>No phase separation</td>
<td>No phase separation</td>
</tr>
<tr>
<td>2</td>
<td>No phase separation</td>
<td>No phase separation</td>
<td>No phase separation</td>
</tr>
<tr>
<td>3</td>
<td>No phase separation</td>
<td>No phase separation</td>
<td>No phase separation</td>
</tr>
</tbody>
</table>

Centrifugation describes the gravity force that occurs on the droplets. The small size of droplets can minimize the gravity force and Brownian motion on the particles that prevent the occurrence of phase separation (Fanun, 2012).

Heating-cooling and freeze-thaw test

Freeze-thaw cycle test is conducted to examine the effect of heating, cooling, and centrifugation against the stability of SNEDDS formula (Patel et al., 2008). An emulsion tends
to be stable at the temperature of 40°C-45°C in few hours of storage. Heating and freezing are potential to damage or break the droplets of an emulsion (Anton and Thierry, 2011). Table 2 indicates that there was no phase separation occurred in the SNEDDS formula during the heating-cooling cycle and freeze-thaw cycle test.

Endurance test

The test is conducted to observe the character similarity of the nanoemulsion through various level of dilutions. The test is also can be used to ensure that the drug would not form a sedimentation. The result of the endurance test was shown in figure 2 and table 3.

Fig. 1: IPE SNEDDS.

Fig. 2: The result of the endurance test with slightly greenish color.

Fig. 3: Particle size analysis of IPE SNEEDS (one of the samples).

Based on the test using particle size analyzer, the particle size of the IPE SNEDDS formula was (15.5 ± 0.8 nm) and the PDI was 0.558 ± 0.04. Nanoemulsion is characterized by the particle size 0.1-100 nm with narrow particle size distribution and the particle size is still stable through dilutions (Dolati et al., 2016; Shah et al., 2010; Rao and Shao, 2008). In addition, the small particle size of the nanoemulsion will increase the permeability of absorption, that lead to an improvement of the oral bioavailability of compounds (Yen et al., 2017).

Whereas, the PDI values from the study were between 0.2-0.7. The PDI value above 0.40 indicates wider particle size distribution and lower particle size uniformity (Chabib et al., 2017; Mao et al., 2009). Phase conversion of the dosage form can be considered as one of the kinetic and thermodynamic parameters in an optimal formula selection (Makadia et al., 2013).

CONCLUSION

The IPE SNEDDS possesses good stability that is proven with no phase separation occurs during several tests such as centrifugation, heating-cooling cycle, and freeze-thaw cycle. The
particle size and PDI value obtained in the study indicated that the IPE SNEDDS possesses optimal characteristic as a nanoemulsion.

Table 3: The result of the endurance test.

<table>
<thead>
<tr>
<th>Dilution</th>
<th>Particle size (nm)</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>25x</td>
<td>14.6</td>
<td>0.581</td>
</tr>
<tr>
<td>50x</td>
<td>15.5</td>
<td>0.586</td>
</tr>
<tr>
<td>100x</td>
<td>16.3</td>
<td>0.507</td>
</tr>
<tr>
<td>Average ± SD</td>
<td>15.5 ± 0.8</td>
<td>0.558 ± 0.04</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENT

This study was sponsored by Ministry of Research, Technology and Higher Education of The Republic of Indonesia under scheme Penelitian Terapan Unggulan Perguruan Tinggi 2017 (No. 032/ST-DirDPPM/70/DPPM/Penelitian Terapan Unggulan Perguruan Tinggi-KEMENRISTEKDIKTI/IV/2017) granted to F.H. The authors also would like to thank Department of Pharmacy Islamic University of Indonesia for the facilities.

REFERENCES

How to cite this article: