Phytochemistry and pharmacological profile of traditionally used medicinal plant Hyssop (Hyssopus officinalis L.)

Mohd Tahir, Mohammad Khushtar, Mohd Fahad, Md. Azizur Rahman
Department of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026, India.

ABSTRACT
Several research publications are published on the medicinal plant Hyssopus officinalis L. But, the researchers find quite a difficulty to study all the publications in a short while. The present review was designed to compile and summarize all the published works on the medicinal plant H. officinalis L. traditionally used in several systems of medicine (1885-2018). It showed that the medicinal plant H. officinalis L. belonging to family Lamiaceae, is a very important culinary, medicinal and perennial plant wildly cultivated in Asia, Europe and America. It possesses numerous phytoconstituents including quercetin-7-O-β-D-apiofuranosyl-(1→2)-β-D-xylopyranoside and quercetin-7-O-β-D-apiofuranosyl-(1→2)-β-D-xylopyranoside-3'-O-β-D-glucopyranoside and possesses antioxidant, anticonvulsant, antifungal, antimicrobial, antihemolytic, antispasmodic and several other pharmacological activities. Its essential oil is widely being used in cosmetic, food and pharmaceutical industries worldwide. Its oil is used as an herbal medicine and very precious food additive. It is one main ingredient of the official formulation of Chartreuse. Za’atar is its well-known herbal formulation. It is a quite significant medicinal plant which can be utilized for the treatment of several diseases such as microbial infection, epilepsy, ulcer, and spasm.

INTRODUCTION
The medicinal plant Hyssopus officinalis L., commonly known as Hyssop (in English), Jufa (in Sanskrit), Zufah-yabis (in Hindi), Zufah (in Urdu) and belonging to family Lamiaceae, is a very important culinary, medicinal and perennial plant wildly cultivated in Asia, Europe and temperate regions of America (Fathiazad et al., 2011). It is largely distributed in Central Asia to East Mediterranean. Generally, the health benefits and therapeutic uses of H. Officinalis are generally based on tradition rather than on any scientific validation, thus, making it an excellent candidate to assemble data, including phytochemical contents, traditional uses and biological activities accessible in recent scientific studies (Fathiazad et al., 2011). Recently the biocidal (nematicidal, ixodical, phytotoxic and insecticidal) effects of industrial steam distilled essential oil from H. officinalis shows that it was effective and robustly active against S. littoralis (Ortiz de Elguea-Culebras et al., 2018). H. officinalis essential oil also showed it as eco-friendly, effective and cheap mosquito larvicidal agent (Benelli et al., 2017). H. officinalis L. affects numerous cytokines in mice with induced asthma including interleukin4 (IL-4), IL6 and IL17 and interferony. H. officinalis is an oil-rich plant which is native to the Caucasus, Turkish North Eastern Black Sea region, North Western Iran and Southern Anatolia which is an extremely esteemed medicinal plant (Kizil et al., 2008). Hyssopus officinalis stimulates digestion and acts as antiseptic. The plant was in a vegetative phase in the month of mid-June, the start of flowering in mid-July, full blooming in mid of August and after flowering in mid of September. The effect of plant harvesting and plant spacing (30 × 30, 40 × 40, 50 × 50 cm) upon the quantity and yield of H. officinalis herb was evaluated in the year from 2006 to 2008. Considerably, larger plant yield was found from the plant after flowering, just like the dry yield of the plant without stems. It was also revealed during this study that the highest fresh plant yield of 1.47 kg/m² was from plant grown in 40 × 40 cm spacing, similarly to the dry yield of the plant without stems. The contents of oil, dry matter, chlorophyll, l-ascorbic acid, flavonoids, carotenoids, and tannins were not significantly

© 2018 Mohd Tahir et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlikeUnported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
affected by the plant spacing. However, the contents of l-ascorbic acid, essential oil, chlorophyll and carotenoids in *H. officinalis* herb were significantly affected by the harvest term (Zawislak, 2011).

The moderate temperature for proper germination of *H. officinalis* was established to be at 20°C-30°C. The maximum germination rate was obtained at 30°C. So, the warmer temperature is very suitable for it. The optimum seedlings growth was established to be at 30°C (Mijani et al., 2013). Application of biofertilizers *Pseudomonas fluorescens/Bacillus subtilis/Azospirillum* (Super Nitro Plus), *Azotobacter/Azospirillum* (Nitroxin), *Glomus intraradices* (Mycorrhizal inoculant) and *Pseudomonas fluorescens* enhanced the yield and other plant criteria of *H. officinalis*. *H. officinalis* had shown better plant criteria with the proper application of a mixture of *Glomus intraradices* and *Pseudomonas fluorescens*; and Super Nitro Plus (Tabrizi et al., 2008). Images of the plant *Hyssopus officinalis* L. and its parts are shown in Figure 1.

TRADITIONAL USES

The plant *H. officinalis* has been used traditionally for medicinal purposes (Fathiazad et al., 2011). Its essential oil is widely being used in cosmetic, food and pharmaceutical industries worldwide. In herbal systems of medicine, *H. officinalis* is supposed to possess soothing, expectorant, and cough suppressant properties. It can stimulate the gastrointestinal system. It is being used in formulations of sauce and also as an ingredient of food in flavor industry (Kazazi et al., 2007). Its leaves are used as an aromatic condiment and have a slightly bitter taste due to its tannins and an intense minty aroma (Paun et al., 2014).

PHYTOCHEMISTRY

Total flavonoids and phenolic contents found to be highest in *H. officinalis* L. ssp. *angustifolius* leaves aqueous extracts were 1.3% (gallic acid equivalent) and 4.7% respectively (Hatipoglua et al., 2013). Proanthocyanidine was present in a very high concentration in aqueous, chloroform and hexane extracts of the leaves, predominantly in chloroform extract of the leaves (10250 mg/L) (Hatipoglua et al., 2013). HPLC analysis validated the occurrence of antioxidant phenolics such as caffeic acid (111.09 g/g) and chlorogenic acid (166.21 g/g) in methanolic extract of the leaves (Hatipoglua et al., 2013).

Total phenol content in the *n*-butanol and ethylacetate extracts of the aerial parts was found to be 246 mg gallic acid equivalent (GAE)/g and 51 mg GAE/g. The major flavonoid apigenin-7-O-β-D-glucuronide was isolated from the hydromethanolic extract of aerial parts. The other main compounds isolated were myrtenyl acetate, camphor, germacrene and spathulenol (Fathiazad et al., 2011).

Main constituents in *H. officinalis* extract from root removed whole plant in various supercritical fluid conditions of extraction were sabinene (4.2%-17.1% w/w), iso-pinocamphone (0.9%-16.5%) and pinocamphone (0.7%-13.6%) (Kazazi et al., 2007).

The main constituents in *H. officinalis* aerial parts were some polyphenolic compounds principally including flavonoids luteolin, diosmin, quercetin, apigenin and their glucosides along with some phenolic acids such as caffeic acids p-hydroxybenzoic, syringic, ferulic, protocatechuic and chlorogenic acid. Essential oils from *H. officinalis* aerial parts had shown some principal constituents such as terpenoids β-pinene, isopinocamphone and pinocamphone (Fathiazad et al., 2011).
Yields of essential oil hydrodistilled from above ground portions of *H. officinalis* raised via seeds were 1.18% on dry herbage weight basis and 0.25% on fresh herbage weight basis. The essential oil (95.6%) had shown the presence of six sesquiterpene hydrocarbons (0.35%), one phenol (0.2%), five oxygenated monoterpenes (60.5%) and seven monoterpenic hydrocarbons (32.3%) in gas chromatographic and mass spectrometry (GCMS) analysis. The major constituents of the camphor odor oil were pinocamphone (49.1%), \(\beta \)-pinene (18.4%), isopinocamphone (9.7%) (Garg et al., 1999).

The \(\beta \)-pinene, camphor, pinocamphone plus 15 other terpenes were present in essential oils at three stages of development in GCMS analysis, among which were myrtenol derivatives, germacrene D, \(\alpha \)-phellandrene and \(\beta \)-phellandrene.
and isopinocamphone. It showed the occurrence of glycosidically bound volatiles also in low concentration (0.01%-0.06%) such as bicyclic terpenes verbenol and myrtenol in leaves (Schulz and Stahl-Biskup, 1991).

Aqueous methanolic extract of leaves of dried *H. officinalis* showed an α-glucosidase inhibitory activity and also showed (7S,8S)-syringoglyceral-9-O-(6'-O-cinnamoyl)-β-D-glucopyranoside and (7S,8S)-syringoglyceral-9-O-β-D-glucopyranoside as evident from spectroscopic data of isolated compounds (Matsuura et al., 2004).

The essential oil steam distilled from *H. officinalis* showed β-pinene (16%) and 1,8-cineole (53%) as the major constituents in GCMS analysis (Ortiz de Elguea-Culebras et al., 2018).

The essential oil from the herb of *H. officinalis* showed 31 compounds in steam distilled oil, 36 compounds in hydrodistilled oil and 27 compounds in hydrodistilled oil by Dean-Stark apparatus in GCMS analysis. All the analyzed oil samples showed the presence of isopinocamphone as the main constituent (40.07%-45.45%) (Wesolowska et al., 2010).

The primary active compounds in oil of *H. officinalis* were cis-3-pinanones and trans-3-pinanones (Hold et al., 2002). The *H. officinalis* essential oil showed saturated bicyclic monoterpen ketones isopinocamphone and pinocamphone with few myrtenol derivatives (Karp and Croteau, 1992).

There is a high capability to save water through longer irrigation intervals of *H. officinalis* (e.g. 14 days) in Khorasan’s semi-arid conditions as the crop serves as an alternative income source in the years of dry conditions (Khazaiea et al., 2008).

Stage of blooming and environmental conditions seriously affect the oil contents in *H. officinalis* with the highest oil contents and yield at the post-blooming stage. Isopinocamphone was found to be the primary component (47.9%-51.4%) amongst the twenty-nine components in the analyzed *H. officinalis* essential oil analyzed by GCMS analysis (Kizil et al., 2008).

The major compounds shown in essential oil from supercritical extracts of *H. officinalis* were terpinen-4-ol (5%), 1,8-cineole (75%), β-pinocarvone (4%) and pinene (4%) along with some heavier compounds (Langa et al., 2009).

Dimethyl sulfoxide (DMSO) extracts of *H. officinalis* leaves showed two main phenolics in high-performance liquid chromatography (HPLC) analysis along with dioxim and isoferulyl-D-glucose ester as the major constituents (Mario et al., 1998).

The essential oil of Spanish *H. officinalis* showed elevated contents of β-pinene (16.82%) and 1,8-cineole (52.89%) as the main constituents in gas chromatography (GC) analysis (Vallejo et al., 1995).

The volatile components in four *H. officinalis* phenotypes differentiated by the color of their corolla showed three ketones pinocarvone, isopinocamphone and pinocamphone as the chief components which can be used to differentiate these phenotypes. The phenotype with the blue flower was more intense in odor than the other phenotypes (Kerrola et al., 1994).

The new flavonoid glycosides namely quercetin-7-O-β-D-apiofuranosyl-(1→2)-β-D-xlyopyranoside-3'-O-β-D-glucopyranoside and quercetin-7-O-β-D-apiofuranosyl-(1→2)-β-D-xlyopyranoside were isolated from the whole herbs of *H. officinalis* cultivated in Xinjiang Uygur Autonomous Region of China (Wang and Yang, 2010).

Isopinocamphone and pinocamphone (43.3% and 4.4% respectively) were present in *H. officinalis* according to the ISO 9841 Standard (1991 E) but they were lacking in var. *decumbens* where limonene (51%), 1,8-cineole (12.3%) and linalol (51.7%) instead were predominantly present (Mazzanti et al., 1998a).

GCMS analysis showed that β-pinene (10.8% and 10.5%), isopinocamphone (29% and 3.2%) and pinocamphone (18.5% and 34%) were the major constituents in the two essential oils of plant *H. officinalis* which were grown in different areas near Urbino (Italy, Marche) (Fraternale et al., 2004).

GCMS analysis showed that the myrtalen (2.32%), p-cymene (2.81%), carvacrol (3.02%), pinocarvone (6.49%), (−)-terpinen-4-ol (7.13%), (−)-β-pinene (7.23%) and isopinocamphone (57.27%) were present as the major constituents in the hydrodistilled essential oil of *H. officinalis* leaves which were collected in the Turkey Southeast Anatolian from wild (Kizil et al., 2010).

High-performance liquid chromatography and mass spectrometry (HPLC-MS) analysis showed free flavonoid aglycons (quercetin, luteolin), flavonoid glycosides (quercitin, isoquercitrin and rutin) and phenolic acid derivatives (ferulic, chlorogenic, p-coumaric, caffeic, gentisic and-caftaric acids) in dissimilar concentrations in *H. officinalis* ethanolic extract along with large amount (77.72 mg/g) of the polyphenolic compounds (Vlase et al., 2014).

The yield of hydrodistilled essential oil in stem, flower, and leaf of *H. officinalis* collected from Western-Himalaya (Chamoli, Uttarakhand, India) varied from 0.22% to 4.4%. Fifty-seven constituents (88.4%) of the stem oil, 44 constituents (99.4%) of the flower oil and 57 constituents (99.8%) of the leaf oil were identified in it. Major components of the oils were trans-pinocamphone (<0.05%-1.3%), myrcene (0.5%-1.3%), myrtenol (1.4%-1.7%), isopimara-9(11),15-diene (<0.05%-1.9%), sabine (0.8%-1.9%), β-phellandrene (1.8%-3.2%), myrtenyl methyl ether (2.7%-3.0%), 1,8-cineole (2.9%-8.0%), β-pinene (5.7%-9.3%), pinocarvone (5.5%-24.9%) and cis-pinocamphone (49.7%-57.7%). The leaf and stem oil were relatively similar in terms of pinocarvone and cis-pinocamphone content. The flower oil was differentiable from the leaf and stem oils due to the presence of a higher quantity of pinocarvone (Pandey et al., 2014).

Steam distilled oil from fresh aerial parts of three Italian *H. officinalis* strains wildly grown in diverse natural habitats of the Abruzzi region (Central Italy) shown thirty-three compounds in it. One of the strains shown very high content of limonene (15.9%) and methyl eugenol (43.9%), another contained 1,8-cineole (23.1%) and β-pinene (24.7%) as main components, while the third one was with high contents of β-pinene (19.3%) and myrtenol (32.6%) (Piccaluga et al., 1999).

H. officinalis essential oil content was ranged from 0.13% to 0.26% and the content improved with time. The yield of *H. officinalis* essential oil ranged from 7.3 kg/ha to 19.6 kg/ha. The major components were β-pinene (5%-15%) and isopinocamphone plus pinocamphone (57%-75%). Delayed harvest improved myrcone, β-pinene, and limonene plus cineole concentrations but reduced isopinocamphone plus pinocamphone. The chemical composition of *H. officinalis* oil from Mississippi
was same as commercial oils from US, France, Canada and Bulgaria (Zheljazkov et al., 2012).

The essential oils from *H. officinalis* L. ssp. aristatus (Godr.) Briq. Wild at two stages of development were same in composition with 1,8-cineole (48.2% and 39.6%), isopinocampheol (16.3% and 29.2%) and β-pinene (11.4% and 39.6%) as major components. However, the commercial essential oil from *H. officinalis* contains larger amounts of β-pinene (14.2%), pinocamphone (10.3%) and isopinocamphone (40.2%) (Tsankova et al., 1993). The main phytoconstituents reported in *H. officinalis* L. are shown in Figure 2.

PHARMACOLOGICAL ACTIVITIES

Antioxidant activity

Two novel flavonoid glycosides quercetin-7-O-β-D-apiofuranosyl-(1→2)-β-D-xylopyranoside and quercetin-7-O-β-D-apiofuranosyl-(1→2)-β-D-xylopyranoside-3',5'-O-β-D-glucopyranoside isolated from *H. officinalis* performed the potent scavenging of stable 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) (Wang and Yang, 2010).

H. officinalis var. angustifolius stems, leaves, and flowers ethanolic extracts showed moderate iron (II) chelating ability, good scavenging hydrogen peroxide, good antioxidant activity in the hemoglobin-induced linoleic acid model and good antioxidant activity in a concentration-dependent manner. Inhibitory concentration fifty percent (IC₅₀) for DPPH scavenging were found to be 148.8 ± 4.31 μg/ml for flowers, 208.2 ± 6.45 μg/ml for leaves and 79.9 ± 2.63 μg/ml for stems (Alinezhad et al., 2013).

H. officinalis extract blended in pork meat samples was seen to inhibit degradation of heme pigments and lipid oxidation caused by cooking and storage for 8 days at 4°C. It also stabilized the red meat color and delayed metmyoglobin formation during cooked meat storage (Fernández-López et al., 2003).

Aqueous extract showed better DPPH radical scavenging activity as compared to chloroform and hexane automated extracts of *H. officinalis* var angustifolius leaves and water distilled Clevenger derived essential oil. The IC₅₀ values of the chloroform extract, water extract and methanol-water (1:1) macerated extract were 28.80, 18.80 and 250 μg/ml, respectively. The nonpolar extract was more active in β-carotene/linoleic acid test system (Hatipoglua et al., 2013).

The antioxidant activity of *H. officinalis* essential oil from Turkey Southeast Anatolian for scavenging of DPPH radical was lower as compared to the standards butylated hydroxytoluene (BHT) and ascorbic acid (Kızıl et al., 2010).

H. officinalis ethanolic extract showed a good antioxidant activity as witnessed by Trolox equivalent antioxidant capacity assay, electron paramagnetic resonance radical detection assay, DPPH radical scavenging assay and hemoglobin ascorbate peroxidase activity inhibition assay (Vlase et al., 2014).

The purified flavonoid (apigenin-7-O-β-D-glucuronide) from *H. officinalis* showed weak scavenging of DPPH radical (IC₅₀ = 116 × 10⁻³ mg/ml). The n-butanol extract, because of the highest content of total phenolics (246 mg GAE/100g) had the best scavenging of DPPH radical (IC₅₀ = 25 × 10⁻³ mg/ml) while ethylacetate extract, the IC₅₀ value of 103 × 10⁻³ mg/ml (Fathiazad et al., 2011). *H. officinalis* essential oil did not modify the ruminal fermentation. Antioxidant activity was found to be 2039 μmol Trolox equivalent per liter (TE/L) (Zheljazkov et al., 2012).

Antifungal activity

Trans-3-pinanones, cis-3-pinanones and *H. officinalis* oil acted as GABA_1 receptor antagonists based on inhibition of 40-ethyl-1-n-[2,3-3H]propylbicycloothbenzoate (3H EBOB) binding in brain membranes of mouse (IC₅₀: 35-64 mM) and well supported by mouse tonic/clonic convulsions (intraperitoneal (i.p.) lethal dose fifty percent (LD₅₀) 175 mg/kg to >250 mg/kg) alleviated by diazepam, 2-Hydroxy-cis-3-pinanone and 2,10-dehydro-3-pinanone, the cis-3-pinanone metabolites exhibited reduced toxicity and potency for inhibition of [3H] EBOB binding (Hold et al., 2002).

Antifungal activity

H. officinalis oil (0.4%) entirely inhibited the mycelium growth of *Pyricularia oryzae* and *Pyrenophora avenae*, the plant pathogenic fungi, in vitro in agar medium. Pinocamphone, isopinocamphone and l-bornyl acetate, the components of *H. officinalis* oil, completely inhibited fungal growth individually and, also in combinations when mixture contained isopinocamphone also. *P. oryzae* mycelial growth was less affected by them. *H. officinalis* oil reduced germination of uredospores of *Uromyces viciae-fabae* and *Botrytis fabae conidia* but, its effects on pathogen infection were less clear-cut. Thus, its effects against apple powdery mildew and barley powdery mildew were variable although 0.05% *H. officinalis* oil reduced rust infection of broad bean when applied 1, 2 or 3 days before, or 1 or 2 days after inoculation (Letessier et al., 2001).

The two essential oils from *H. officinalis* grown in two different localities near Urbino (Italy, Marche) and grown at 1000 m above sea level showed very high antifungal activity against different phytopathogenic fungi strains (Fraternali et al., 2004).

The fractionated and isolated growing hyphal *Aspergillus fumigatus* cell walls cultured in the absence or presence of essential oil from *H. officinalis* showed that the presence of essential oil caused a decrease in levels of uronic acid, proteins and neutral sugars, whereas phosphorus, lipids, and amino sugars levels were increased. Neutral sugars were mainly consisted of galactose, mannose, and glucose, while the amino sugars consisted of galactosamine and glucosamine as observed in HPLC analysis. *H. officinalis* oil presence induced marked changes in the content of galactosamine and galactose in the culture medium. *H. officinalis* oil also induced similar changes in the different fractions with a more distinct effect on the major components (Ghfir et al., 1997).

The biocidal (nematicidal, ixodicidal, phytotoxic and insecticidal) effects of industrial steam distilled essential oil from *H. officinalis* was effective and robustly active against *S. littoralis* (Ortiz de Elguea-Culebras et al., 2018).

Antimicrobial activity

The disc diffusion tests carried out on Gram+ve (*Enterococcus spp.* and *Staphylococcus aureus*) and Gram–ve bacteria (*Pseudomonas spp.*, *Proteus mirabilis*, *Escherichia coli*, *Klebsiella oxytoca*, and two strains of *Salmonella spp.*) showed
an antimicrobial activity insignificant for *H. officinalis* essential oil from Italy (Piedmont), but broader, and in a few cases more evident (*E. coli* and *Enterococcus spp.*) and for essential oil of var. *decumbens* (Jordan & Fourn.). All yeasts (*C. tropicalis, C. kruusei* and seven strains of *Candida albicans*) were robustly inhibited by both species. In liquid medium, the MIC of *H. officinalis* was between 0.6% and 1.2% v/v for yeasts and always 41.2% v/v for bacteria, while the MIC of var. *decumbens* was between 0.15% and 0.3% v/v for the yeasts, 0.3% and 1.2% v/v for the Gram−ve bacteria and 0.15% and 0.6% v/v for the Gram+ve bacteria. *H. officinalis* var. *decumbens* was bactericidal. 1,8-Cineole and linalool contributed to the greater antimicrobial activity of var. *decumbens* in comparison with *H. officinalis*, while limonene was responsible for the antifungal action observed in both oils (Mazzanti *et al.*, 1998a).

H. officinalis has moderate in vitro antimicrobial activity against Gram+ve and Gram−ve bacteria and antioxidant activity together with antifungal, antiviral and insecticidal activities. It has shown α-glucosidase inhibitory, antiplatelet and myorelaxant activities in vivo (Fathiazad *et al.*, 2011).

The 5 μl and 10 μl of *H. officinalis* essential oil from Southeast Anatolian, Turkey exhibited significant antimicrobial activity against *Staphylococcus pyogenes*, *Staphylococcus aureus*, *Escherichia coli* and *Candida albicans*, but not against *Pseudomonas aeruginosa* in disc diffusion test (Kızıl *et al.*, 2010; Vlase *et al.*, 2013).

The coriander and *H. officinalis* essential oils (0.02% v/w) inhibited the growth of Enterobacteriaceae and the development of undesirable sensory changes in vacuum-packed beef meat stored at 6 ± 1°C and 0.5 ± 0.5°C for 15 days. The effect on the total viable bacterial count of lactic acid bacteria and other groups of microorganism was minor and similar for both oils. These additives did not significantly affect protein electropherograms, meat pigments, protease activity, pH levels and amino nitrogen levels indicating the limited effect of these oils in the concentrations applied on preserving vacuum-packed minced beef (Michalezyk *et al.*, 2012).

The essential oil from *H. officinalis* L. *ssp. angustifolius* showed antimicrobial activity in vitro against a yeast *C. albicans*, fungi, and bacteria with minimum inhibitory concentration (MIC) of 15.62 μl/ml–250 μl/ml where the methanolic extract was inactive. The methanolic extract showed IC₅₀ of 117.0 μg/ml in DPPH assay while 40% inhibition at 2 g/L concentration in a linoleic acid system where essential oil was inactive (ÖZET *et al.*, 2006).

Antidiabetic activity

Aqueous methanolic extract of dried *H. officinalis* leaves (300 mg/kg and 100 mg/kg body weight, b.wt.) showed an α-glucosidase inhibitory activity in mice (Miyazaki *et al.*, 2003; Matsuura *et al.*, 2004). It has antidiabetic activity but it is contraindicated in patients with liver affections (Akram *et al.*, 2013).

Antihemolytic activity

H. officinalis extracts showed very good antihemolytic activity against H₂O₂-induced hemolysis in rat erythrocytes (48.51 ± 2.27 μg/ml for flowers, 19.47 ± 0.73 μg/ml for leaves and IC₅₀ 63.1 ± 2.65 μg/ml for stems) (Alinezhad *et al.*, 2013).

Antiulcer activity

Pre-treatment with 100 mg/kg and 125 mg/kg b. wt. of *H. officinalis* ethanolic extract to albino rats 1 h before the administration of ethanol showed a great antioxidant and antiulcer potential depicted by decreased nitric oxide level, decreased reactive oxygen species (ROS) generation, improved integrity of stomach and improved mucus secretion supporting its traditional use in folk medicine (Saini and Sharma, 2012).

The *H. officinalis* extract enriched in polyphenolic compounds (phenolic acids, tannins, and flavonoids) showed a significant inhibition (92.67%) against urease obtained from jack bean and low inhibition (19.6%) against α-chymotrypsin which could be considered as a possible remedy in ulcer treatment (Paun *et al.*, 2014).

Antileishmaniasis activity

Ointment-based *H. officinalis* extracts applied topically two times daily for 20 days effectively reduced the cutaneous ulcer size and burden of Leishmania parasite in the spleen as compared to glucantime in specific BALB/C mice (Akhalghi *et al.*, 2014).

Mosquito larvicide activity

H. officinalis essential oil showed lethal concentration (LC₅₀) values higher than 90 μl/L in acute toxicity study against binary mixtures of *Culex quinquefasciatus* vector, a vector of lympathic filariasis, supporting it as eco-friendly, effective and cheap mosquito larvicides (Benelli *et al.*, 2017).

Airway remodeling inhibition

The expression of both TIMP-1 and MMP-9 decreased after being treated with standard dexamethasone and Uygur herb *H. officinalis* accompanied by the relieved pathological changes including smooth muscle proliferation, mucus secretion and collagen deposition supporting its airway remodeling inhibition by correcting the imbalance of MMP-9/TIMP-1 ratio (Ma *et al.*, 2014a).

Antispasmodic activity

Essential oil from *H. officinalis* var. *decumbens* and linalool non-competitively inhibited the barium chloride-induced and acetylcholine-induced contractions of isolated guinea pig ileum in a concentration-dependent manner (IC₅₀ values: *H. officinalis* var. *decumbens* 60 mg/ml and 37 mg/ml; linalool 51 mg/ml and 10 mg/ml). 1,8-Cineole and limonene also showed only a weak spasmojen action (Mazzanti *et al.*, 1998b).

Anti-inflammatory activity

The eosinophils ratio in bronchoalveolar lavage fluid and the levels of serum immunoglobulins IgG and IgE in the *H. officinalis* treatment group were decreased compared to ovalbumin and dexamethasone-treated group (chronic asthmatic) observed by enzyme-linked immunosorbent assay (ELISA). *H. officinalis* also affected the immune regulation (Ma *et al.*, 2014b).

Muscle relaxant activity

The essential oil of *H. officinalis* inhibited the barium chloride (BaCl₂)-induced and acetyl choline (ACh)-induced
Muscle contractions in the isolated guinea-pig ileum. Essential oil also decreased the basal tone and reduced the amplitude of spontaneous movements in isolated rabbit jejunum (Lu et al., 2002).

Antiasthmatic activity
Uygur herb *H. officinalis* could affect the levels of some cytokines (such as IL-17, IL-6, IL-4 and interferon (IFN)-γ) in asthmatic mice (Ma et al., 2014a).

Anti-HIV activity
Methanolic extracts, subsequent to ether, chloroform and chloroform-ethanol extractions of dried leaves of *Hyssopus officinalis*, showed very strong anti-HIV (Human Immunodeficiency Virus) activity as measured by inhibition of HIV reverse transcriptase, p17 and p24 antigen expression and syncytia formation probably due to caffeic acid and it may be useful in the treatment of patients with acquired immunodeficiency syndrome (AIDS) (Kreis et al., 1990).

A polysaccharide from *H. officinalis* aqueous extract showed anti-HIV activity against HIV-1 in HUT78 T cell line as demonstrated by the inhibition of syncytia formation and HIV-1 p24 antigen (Gollapudi et al., 1995).

A summary of different pharmacological activities of *Hyssopus officinalis* L. is shown in Table 1.

<table>
<thead>
<tr>
<th>Pharmacological activities</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioxidant activity</td>
<td>Fernández-López et al., 2003; Wang and Yang, 2010; Kizil et al., 2010; Fathihaizad et al., 2011; Zheljazkov et al., 2012; Almezadah et al., 2013; Hatipoglu et al., 2013; Vlase et al., 2014</td>
</tr>
<tr>
<td>Anticonvulsant activity</td>
<td>Hold et al., 2002</td>
</tr>
<tr>
<td>Antifungal activity</td>
<td>Ghfir et al., 1997; Letessier et al., 2001; Fraternelle et al., 2004; Ortiz de Esguea-Culebras et al., 2018</td>
</tr>
<tr>
<td>Antimicrobial activity</td>
<td>Mazzanti et al., 1998a; Özer et al., 2006; Kizil et al., 2010; Fathihaizad et al., 2011; Michalczuk et al., 2012; Vlase et al., 2014</td>
</tr>
<tr>
<td>Antidiabetic activity</td>
<td>Miyazaki et al., 2003; Matsuura et al., 2004; Akram et al., 2013</td>
</tr>
<tr>
<td>Antithrombotic activity</td>
<td>Almezadah et al., 2013</td>
</tr>
<tr>
<td>Antinociceptive activity</td>
<td>Saini and Sharma, 2012; Paun et al., 2014</td>
</tr>
<tr>
<td>Antileishmanial activity</td>
<td>Akhlaghi et al., 2014</td>
</tr>
<tr>
<td>Mosquito larvicide activity</td>
<td>Benelli et al., 2017</td>
</tr>
<tr>
<td>Airway remodeling inhibition</td>
<td>Ma et al., 2014a</td>
</tr>
<tr>
<td>Antispasmodic activity</td>
<td>Mazzanti et al., 1998b</td>
</tr>
<tr>
<td>Anti-inflammatory activity</td>
<td>Ma et al., 2014b</td>
</tr>
<tr>
<td>Muscle relaxant activity</td>
<td>Lu et al., 2002</td>
</tr>
<tr>
<td>Antiastmatic activity</td>
<td>Ma et al., 2014b</td>
</tr>
<tr>
<td>Anti-HIV activity</td>
<td>Kreis et al., 1990; Gollapudi et al., 1995</td>
</tr>
</tbody>
</table>

METABOLISM OF PRINCIPAL ACTIVE INGREDIENTS IN *H. OFFICINALIS* OIL

The major metabolite of the principal active ingredients in *H. officinalis* oil i.e., cis-3-pinanone in each P30 system and in the brain of the ip treated mouse was 2-hydroxy-cis-3-pinanone, and two minor metabolites were hydroxypinanones other than 2-hydroxy-trans-3-pinanone and 4-3-hydroxy-cis-3-pinanone in GCMS analysis. The urine from oral cis-3-pinanone treatment examined on a qualitative basis contained conjugates of metabolites observed in the microsomal systems plus 2,10-dehydro-3-pinanone. Trans-3-pinanone was metabolized more slowly than the cis-isomer in each system to give hydroxy derivatives different than those derived from cis-3-pinanone (Hold et al., 2002).

A microsomal preparation from leaf epidermis oil glands of *H. officinalis* converts the parent olefin (−)-β-pine to the aliphatic alcohol. (−)-trans-pinocarveol that presumably gives rise to (−)-pinocamphone and (−)-isopinocamphone by subsequent oxidation and two stereochemical alternatives for reduction of the conjugated double bond. The same preparation catalyzes the hydroxylation of (−)-α-pine to (−)-myrtenol at a slower rate. The pinene hydroxylase from the oil glands of *H. officinalis* has characteristics of a distinct cytochrome P-450 species. Parent cyclic olefins were metabolized by a pathway involving aliphatic oxidation and conjugate reduction (Karp and Croteau, 1992).

CONCLUSION

Present review elaborated that the medicinal plant *H. officinalis* L. possesses numerous phytoconstituents such as quercetin-7-O-β-D-apiofuranosyl(1→2)-β-D-xylopyranoside and quercetin-7-O-β-D-apiofuranosyl-(1→2)-β-D-xylopyranoside-3'-O-β-D-glucopyranoside and also possesses various pharmacological or biological activities such as antioxidant, anticonvulsant, antifungal, antimicrobial, anti-inflammatory, antitumor and antispasmodic activities. The plant *H. officinalis* L. is a quite significant medicinal plant possessing several phytoconstituents of pharmaceutical importance and which can be utilized for the amelioration and treatment of several diseases such as microbial infection, epilepsy, ulcer, and spasm. The present review compiled and summarized the significant published works on the medicinal plant *H. officinalis* L. traditionally used in several systems of medicine such as Unani and Ayurveda covering the phytochemistry, pharmacology and its traditional uses which can be further evaluated to achieve lead molecules in the search of novel herbal drugs.

ACKNOWLEDGMENTS

Authors are thankful to the Department of Pharmacy, Integral University Lucknow for their encouragement, motivation towards publication and research atmosphere during the recent literature search and future's planned research study (manuscript communication number provided by the University: IU/R&D/2018-MCN000354).

CONFLICT OF INTEREST

The authors report no conflicts of interest.

REFERENCES

Khazaiea HR, Nadjaib F, Bannayana M. Effect of irrigation frequency and planting density on herbage biomass and oil production of thyme (Thymus vulgaris) and hyssop (Hyssopus officinalis). Ind Crops Prod, 2008; 27:315-321.

Thome OW. Flora von Deutschland. Österreich und der Schweiz 1885, Gera, Germany.

Zheljazkov VD, Astatkie T, Hristov AN. Lavender and hyssop productivity, oil content, and bioactivity as a function of harvest time and drying. Ind Crops Prod, 2012; 36:222-228.

How to cite this article: