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Phosphatidylinositol 3-kinase (PI3K) plays a prominent role in regulating various crucial cellular functions. Many 
studies have indicated the involvement of PI3K in tumorigenesis. In the current study, thirty-one quinazoline 
derivatives were utilized to build a Quantitative Structure-Activity Relationship (QSAR) model which correlates 
structural feature with PI3K inhibition. The statistically robust QSAR model is pIC50 = 2.515 + 0.000005 (AM1_Eele) 
+ 0.004 (AM1_HF) + 1.170 (AM1_LUMO) − 0.117 (apol) + 0.003 (ASA_H) with a leave-one-out cross-validation 
coefficient (q2) of 0.6058 and external validation (R2pred) of 0.7725. A novel compound (SC25) was proposed based 
on the validated QSAR model. Molecular docking of the ligand on PI3K revealed the similar binding mode of SC25 
and parent compound ((S)-C5) as well as native ligand (2NQ). Molecular dynamics simulation of 40 ns confirmed 
the conformational stability of each SC25, (S)-C5, and 2NQ, complexed with PI3K. Prediction of affinity using MM-
PBSA method revealed that SC25 has a comparable affinity with that of (S)-C5 and better than that of 2NQ.
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INTRODUCTION
The phosphatidylinositol 3-kinase (PI3K) signaling 

pathway is an important signaling pathway, which controls 
the cycle, survival, metabolism, motility, and survival of cells. 
The pathway is commonly activated transduction cascade in 
human cancers as its aberrations are found in up to 40% of all 
tumor types; thus, targeting the PI3K pathway was regarded as a 
potential strategy in the treatment of various tumor types (Polivka 
and Janku, 2014; Miled et al., 2007). To date, numerous efforts 
have been performed to develop compounds targeting the PI3K/
AKT/mTOR pathway; some of which are in clinical development 
including PF-04691502 (Pfizer), BEZ235 (Novartis), XL765 
(Exelixis/Sanofi-Aventis) and GSK2126458 (GlaxoSmithKline) 

(Figure 1) (Yap et al., 2015; Bauer et al., 2015; Britten et al., 
2014; Papadopoulos et al., 2015). As the development of dual 
inhibitors of the PI3K/mTOR has not been straightforward, novel 
compounds with reduced toxicity and increased efficacy are still 
needed.

With the growing appreciation of quinazoline as 
important scaffolds in the development of a PI3K inhibitor, 
Zhang et al. (2015) synthesized and evaluated the biological 
activity of N-(2-methoxy-5-(3-substituted quinazolin-4(3H)-
one-6-yl)-pyridin-3-yl) phenylsulfonamide as a PI3K inhibitor. 
They found that two compounds, (S)-C5 and (S)-C8, displayed 
potent inhibitory activity against PI3Ks and mTOR, especially 
against PI3Kα. To aid in the design of quinazoline derivatives as 
a PI3K inhibitor, in the current study, we performed a quantitative 
structure-activity relationship (QSAR), molecular docking, and 
molecular dynamics study on a series of quinazoline derivatives 
as a PI3K inhibitor. Our goal is to find a novel compound of 
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the quinazoline derivatives with better affinity than the existing compound by means of the computational method.

Fig. 1: Structure of some PI3K inhibitors.

Table 1: The quinazoline derivatives in the data set.

No. Compound R1 R2 IC50 (µM) HCT-116

1 A1 4-F CH2CH2CH3 4.06

2 A2 4-F CH2N(CH3)2 2.69

3 A3 4-F CH2N(CH2CH3)2 1.2

4 A4 4-F CH2N(CH2CH2)2O 1.82

5 A5 4-F CH2N(CH2CH2)2NCH3 1.45

6 A6 4-F CH2N(CH2)4 2.64

7 A7 4-F CH2N(CH2)5 2.75

8 A8 4-Cl CH2N(CH2CH2)2O 2.02

9 A9 4-CH3 CH2N(CH2CH2)2O 1.35

10 A10 2,4-di-F CH2N(CH2CH3)2 1.03

11 A11 F Ph 4.74

12 A12 F Ph-4-OCH3 2.80

13 A13 F Py-4 2.95

14 A14 F Py-3 1.29

15 B1 F CH2N(CH2CH2)2O 1.42

16 B2 F CH2N(CH2CH2)2NCH3 1.25

17 (S)-C1 F Boc 0.66

18 (S)-C2 F H 1.46

19 (S)-C3 F Ac 1.25

20 (R)-C4 F Ac 4.72

21 (S)-C5 F COPr-c 0.71

22  (R)-C6 F COPr-c 6.09

23 (S)-C7 F COCH(CH2CH2)2O 0.60

24 (S)-C8 F CH2Pr-c 0.67

25 (R)-C9 F CH2Pr-c 4.88

26 D1 F Boc 1.53

27 D2 F H 1.15

28 D3 F Ac 1.30

29 D4 F COPr-c 1.35

30 D5 F COCH(CH2CH2)2O 0.96

31 D6 F CH2Pr-c 1.22

A computational method such as QSAR, molecular 
docking, and molecular dynamics simulation, has been extensively 
applied in the rational drug design (Kumar et al., 2016; Shinde et 
al., 2017). It has been a powerful approach to improve potency, 
selectivity and/or ADMET properties of lead compounds in the 
development of novel chemical entities. The combined QSAR, 
molecular docking, and molecular dynamics simulations are 
widely used to predict the biological activity of potential new 
drugs and the binding mode of a drug in the active site of a protein 
target, as well as to evaluate the conformational stability of drug-
protein complex during a period of time (El- Sawy et al., 2017; 
Abdalsalam, 2017; Khan et al., 2017; Arba et al., 2017a).

COMPUTATIONAL METHOD

Dataset
Thirty-one compounds of quinazoline derivatives were 

taken from a reference (Zhang et al., 2015) as shown in Figure 
2 and Table 1. The IC50 values (concentration that needs for 
inhibition the 50 % of enzyme activity) of the 31 compounds were 
converted to the pIC50 (−Log IC50) values. The pIC50 values were in 
the range of 0.60 µM to 6.09 µM. For all compounds, the values of 
studentized deleted residual of >2 or <−2 were used to identified 
outlier compound(s). Furthermore, the dataset of biological 
activities of different compounds were grouped into a training set 
(75% of compounds) and test set (25% of compounds). The test 
set was randomly selected which span the entire activity range.

Geometry optimization and descriptor calculation
Each compound was built and geometrically optimized 

by using Gaussian 09 software (Frisch et al., 2009). The semi-
empirical Austin Model-1 (AM1) method was used for the 
optimization. Using the optimized structure of the molecule, 
various descriptors were calculated using Molecular Operating 
Environment (MOE 2009.10) software. The following molecular 
descriptors were used: total energy (AM1_E), electronic energy 
(AM1_Eele), dipole moment (AM1_Dipol), formation heat 
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(AM1_HF), HOMO energy (AM1_HOMO), LUMO energy 
(AM1_LUMO), polarity (Apol), hydrophobic surface area 
(ASA_H), water solubility (Log S), partition coefficient (Log 

P), globularity (Glob), van der Waals volume (Vol), and molar 
refractivity (Mr).

Fig. 2: Structure of parent compound.

QSAR model calculation and validation
The QSAR model development was carried out by 

using the multiple linear regression analysis to find the linear 
relationship between the independent variable (a set of descriptor) 
and the dependent variable (biological activity) by means of 
SPSS software (version 19; SPSS Inc., Chicago, IL, USA). The 
reliability of the QSAR model was statistically adjudged based 
on the following criteria: R2 (squared correlation coefficient), F 
test (Fischer’s statistic value), Radj

2 (adjusted squared correlation 
coefficient), and SEE (standard error of estimation) (Dearden et 
al., 2009). The QSAR model was also checked for its predictive 
potential by using leave-one-out (LOO) cross-validation 
coefficient (q2), which is a reliable method for testing the 
significance of the model (Golbraikh and Tropsha, 2002). In the 
LOO cross-validation, every single compound of the training set 
was removed and its biological activity was predicted using the 
model built from the rest of compounds. The following equation 
was utilized to calculate q2 value:

where yi, ŷi, and ȳ are measured, predicted, and average measured 
activities of the compound in the training set, respectively. High 
q2 value (q2 > 0.5) is considered as a proof of the predictive QSAR 

model (Golbraikh et al. 2003; Tropsha et al., 2003). However, 
Tropsha et al. (2003) explained that it is necessary to validate the 
model with the test compounds in addition to the internal cross-
validation. In that scheme, the biological activities of the test set 
compounds were predicted using the developed model and the 
validity of the model was evaluated in terms of external cross-
validation coefficient (R2pred). The R2pred value higher than 0.6 
indicates that the model was valid.

Design for new molecule and molecular docking
Designing and prediction of the biological activity of the 

novel compound of quinazoline derivative were performed using 
the validated QSAR model. As a reference compound, (S)-C5 
was used as it was the most potent compound in the enzyme-
based activity test (Zhang et al., 2015). Furthermore, to predict 
the binding mode of the novel compound, molecular docking 
to PI3Kγ was performed, in which the structure of PI3Kγ was 
extracted from protein data bank with PDB ID 3S2A and X-ray 
resolution of 2.55 Å (Nishimura et al., 2011). The binding site of 
the protein was located following the native ligand (2NQ) binding 
conformation. The grid point spacing of 0.375 Å with a dimension 
of 50 in each x, y, and z direction was used, while other docking 
parameters were left as default (Arba et al., 2017b).
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Molecular dynamics simulation 
Molecular dynamics (MD) simulation was performed 

using AMBER16 (Case et al., 2015) on each complex of top-ranked 
docking conformation of the parent compound ((S)-C5), novel 
designed compound (SC25), and native ligand (2NQ). Protein and 
ligand parameterization was performed by employing the ff14SB, 
GAFF force fields and AM1-BCC (Maier et al., 2015; Wang et al., 
2004; Jakalian et al., 2002). Each system was then solvated using 
water model of a truncated octahedron TIP3P with a minimum 
distance of 10 Å around the complex. The Na+ counterions addition 
was done to keep the system neutral. The minimization, heating, 
and equilibration were performed using Sander module of Amber 
16. The minimization step was performed sequentially during 3 
three steps; each consisted of 500 steps of steepest descents and 
5500 steps of conjugate gradients. The restraint (k = 500 kcal mol-1 

Å-2) was applied on whole protein and backbone atoms of protein 
during first and second minimization, respectively, while the third 
minimization was performed without any restraint. 

Each system was heated gradually from 0 to 100, 100 to 
200, and 200 to 300 K during every 50 ps in NVT ensemble with a 
time step of 0.0005 ps and restraints (k) of 5 kcal mol-1 Å-2. System 
relaxation was performed using three 100 ps equilibration steps 
in NPT ensemble from 5 to 3 and 0 kcal mol-1 Å-2. The production 
step of 40 ns was performed by using pmemd.cuda module in 
Amber 16 in an isothermal-isobaric ensemble (Salomon-Ferrer 
et al., 2013). To keep the system in 300 K thermal bath, the 
Langevin thermostat was used with a collision rate of 1.0 ps-1. 
The SHAKE algorithm was used to restrain all covalent bonds 
involving hydrogen atoms (Ryckaert et al., 1977). The PME 
method was used to treat the long-range electrostatic interactions 
with an integration step of 2 fs (Darden et al., 1993). The long-
range non-bonded interactions were calculated by applying 
periodic boundary conditions with a cutoff distance of 9.0 Å. The 
CPPTRAJ module was utilized to analyze and extract structural 
snapshots of MD trajectory (Roe and Cheatham, 2013), while 
Visual Molecular Dynamics and Discovery Studio Visualizer were 
used for visualization (Humphrey et al., 1996).

Binding free energy calculations
The prediction of binding free energy for each system 

was performed by using Molecular Mechanics Poisson-Boltzmann 
solvent accessible surface area (MM-PBSA) method (Kollman et 
al., 2000; Arba et al., 2017b). The last 5 ns MD trajectory of 200 
snapshots was utilized to calculate the binding free (Miller et al. 
2012).

RESULTS AND DISCUSSION
The present investigation aims to provide the 2D QSAR 

study which correlates descriptors as an independent variable with 
biological activity as a dependent variable. Firstly, calculation of 
the values of studentized deleted residual was performed, which 
then identified six compounds as outliers (Table 2). The six 
compounds were then removed from the dataset. Furthermore, 25 
compounds were left as data set which was divided randomly to 
be training set and a test set of 19 and 6 compounds, respectively 
(Table 2).

Furthermore, multiple linear regression analysis was 
applied to generate QSAR models using 19 compounds as the 

training set. The best QSAR model as shown below, which was 
chosen based on statistical criteria, has good statistical parameters 
such as correlation coefficient (R), determination coefficient (R2), 
and Fischer’s value (F) of 0.926, 0.857, and 16.452, respectively.

Table 2: The data set and studentized deleted residual values. Compounds 
assigned as * and ** are outlier and test set, respectively.

Comp pIC50 Studentized Delete Residual

C6* −0.7846 −2.5274

C9* −0.6884 −2.0949

A11 −0.6758 −0.3631

C4* −0.6739 −2.1038

A1 −0.6085 −0.2422

A13 −0.4698 1.2386

A12** −0.4472 0.8414

A7 −0.4393 −1.5827

A2 −0.4298 −1.102

A6** −0.4216 −0.5561

A8 −0.3054 −0.1614

A4 −0.2601 −0.4385

D1 −0.1847 −1.1022

C2 −0.1644 −1.2681

A5** −0.1614 0.0405

B1 −0.1523 −0.5212

A9 −0.1303 0.1020

D4** −0.1303 −0.6148

D3 −0.1139 0.5584

A14* −0.1106 2.9139

B2 −0.0969 0.0353

C3 −0.0969 0.4050

D6** −0.0864 0.0894

A3* −0.0792 3.3536

D2 −0.0607 1.3603

A10 −0.0128 0.6383

D5** 0.0177 −0.753

C5 0.1487 0.1735

C8* 0.1739 2.0190

C1 0.1805 1.2865

C7 0.2218 1.1938

pIC50 = 2.515 + 0.000005 (AM1_Eele) + 0.004 
(AM1_HF) + 1.170 (AM1_LUMO) ˗ 0.117 (apol) 
+ 0.003 (ASA_H).

The accuracy of the model was also assured by the low 
standard error (SE) of 0.1112. Table 3 shows descriptors and 
statistical parameters of the statistically significant QSAR model.

As shown in Table 3, the validity of QSAR model was 
indicated by leave-one-out cross-validation coefficient (q2) of 
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0.6058. It can be inferred from the model that more hydrophobic 
groups are preferable for increasing the biological activity as 
indicated by the positive sign of the coefficient of ASA_H. 
Meanwhile, the negative sign of the coefficient of apol indicates 
that less polar groups were favorable for the activity. In addition, 
the positive sign of the coefficient of AM1_Eele, AM1_HF, and 
AM1_LUMO implies the positive contribution of those parameters 
to biological activity. It is noted that AM1_LUMO is the most 
influencing descriptor as indicated by the highest coefficient 
value. The validity of the model was also supported by external 

validation of the test compounds (R2pred) of 0.7725, which fulfills 
the condition, R2pred > 0.5 (Golbraikh and Tropsha, 2002). Figure 3 
shows the relationship between observed and predicted pIC50.

Table 3: Statistical results of QSAR model for quinazoline derivatives.

Descriptors q2 R R2 Adjusted 
R2

Standard 
Error (SE)

AM1_Eele, AM1_HF, 
AM1_LUMO, apol, 
ASA_H

0.6058 0.926 0.857 0.802 0.1112

Fig. 3: The relationship between observed pIC50(X) and predicted pIC50(Y) of quinazoline derivatives.

Fig. 4: Structures of (a) (S)-C5, (b) SC25.

The design of new compound and molecular docking
Designing and prediction of the biological activity of 

novel compound were carried out by using the best QSAR model. 
The results showed that a new compound (SC25) has predicted 
IC50 lower (IC50pred  = 0.5364 µM) than that of parent compound 
((S)-C5) (IC50pred  = 0.71 µM). The structure of (S)-C5 and SC25 is 

depicted in Figure 4, which differs by ethyl substituent in meta-
position.

Next, molecular docking of (S)-C5 and SC25 on human 
PI3Kγ (PDB code 3S2A) was performed. For docking validation, 
the native ligand (2NQ) was docked on the PI3Kγ. The result 
showed that the root-mean-square-deviation (RMSD) between 
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crystallographic and docking conformations is 1.1.6 Å, indicating 
that the docking protocol was valid (Jones et al., 1997; Morris 
et al., 1998). The docking conformation of 2NQ was able to 
reproduce important interactions such as hydrogen bond between 
nitrogen quinoline with Val882. The 2D structure and interaction 
of 2NQ with human PI3Kγ were depicted in Figure 5. 

The docking conformation of SC25 showed that several 
hydrogen bonds were formed in the binding of SC25: two oxygen 
atoms of sulfonamido with Lys833; nitrogen atom of pyridine ring 

with Tyr867; nitrogen atom of quinazolin-4(3H)-one moiety with 
Val882; and the oxygen atom of cyclopropylcarbonyl with Thr886. 
On other hand, docking conformation of (S)-C5 showed less 
number of hydrogen bonds: only one oxygen atom of sulfonamido 
with Lys833; nitrogen atom of quinazolin-4(3H)-one moiety with 
Val882, and nitrogen atom of pyridine ring with Asp964, instead 
of Tyr867 (Zhang et al., 2015; Nishimura et al., 2011). Figure 6 
depicts docking conformations of (S)-C5 and SC25 in the binding 
site of PI3K.

Fig. 5: The 2D structure (a) and docked conformation (b) of 2NQ.

Fig. 6: The docked conformations of (a) (S)-C5 and (b) SC25 in the binding pocket of PI3K.

Molecular dynamics simulation
Molecular dynamics simulation was performed to 

evaluate the conformational stability of three compounds, i.e. (S)-
C5, SC25, and 2NQ, each complexed with PI3K. The stability 

of each complexed was required before performing energetics 
analysis, which was measured by the values of Root-Mean-
Squared-Deviation (RMSD). Figure 7 shows the RMSD plot of 
heavy atoms of PI3K with respect to simulation time for each 
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complex. The average values of RMSD during 40 ns dynamics 
simulation of the three complexes are around 3 Å, in which the 
RMSD of SC25 is lower than that of S-C5, indicating a more 
stable structure. 

In addition, the fluctuation of amino acid residues due to 
ligand binding was measured by the root-mean-square-fluctuation 

(RMSF) values. Figure 8 shows RMSF of protein versus residue 
number. The similar pattern of RMSF was observed in all three 
complexes, which indicate the similar binding mode of the three 
ligands. It was shown that high fluctuation was recorded in the 
amino acid residue Asp515 (Asp758) and carbonyl end of the 
protein.

Fig. 7: The RMSD values of each 2NQ (red), (S)-C5 (green), and SC25 (blue), each complexed with PI3K.

Fig. 8: The RMSF values versus residue number of 2NQ (red), (S)-C5 (green), and SC25 (blue), each complexed with PI3Kγ.

Binding energy prediction by MM-PBSA
Table 4 shows the binding free energies of each compound 

bound to the PI3K. The MM-PBSA prediction showed that the 
binding free energies of both (S)-C5 (ΔGPBTOT = −33.78 kcal/mol) and 
SC25 (ΔGPBTOT = −33.74 kcal/mol) were almost the same, indicating 
that both compounds have similar affinities. It is worth to note that 

both compounds have better affinities than that of native ligand (2NQ) 
(ΔGPBTOT = −20.17 kcal/mol). Furthermore, in each complex, both van 
der Waals (ΔEVDW) and electrostatic energies (ΔEELE) were favorable 
for ligand binding. It was also the case for the contribution of the 
nonpolar energy of desolvation. In the meantime, the polar energy of 
desolvation (ΔEPBCAL) was all unfavorable for ligand binding.
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Table 4: The binding free energies and the corresponding components (kcal/
mol) of each compound bound to the PI3Kγ.

Comp ΔEELE ΔEVDW ΔEPBCAL ΔEPBSUR ΔEPBELE ΔGPBTOT

2NQ −19.01 −54.77 58.45 −4.85 39.44 −20.17

(S)-C5 −38.37 −66.27 76.72 −5.85 38.35 −33.78

SC25 −37.74 −65.08 75.35 −6.27 37.61 −33.74

CONCLUSION
The current study shows that good correlation of 

13 descriptors which represent the chemical structures of the 
compound and the biological activities result in valid QSAR 
equation. The QSAR model was used to design novel compound 
(SC25) which has lower predicted IC50 than the parent compound 
((S)-C5). Molecular dynamics simulation of 40 ns was used 
to assure the stability of ligand in the binding cavity of PI3K. 
Prediction of binding free energy using MM-PBSA method shows 
that the novel compound has a comparable affinity with that of the 
parent compound. It is noted that the affinity of novel compound 
is much lower than that of native ligand.
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