Journal of Applied Pharmaceutical Science Vol. 8(04), pp 023-032, April, 2018 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2018.8404

ISSN 2231-3354 CC BY-NC-SA

Computational investigation of marine bioactive compounds against E6 oncoprotein of Human Papilloma Virus-HPV16

Pavithra Dhamodharan, Nirmaladevi Ponnusamy, Rajasree Odumpatta, Sajitha Lulu, Mohanapriya Arumugam* Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India.

ARTICLE INFO

Article history: Received on: 31/08/2017 Accepted on: 13/03/2018 Available online: 29/04/2018

Key words: Cervical cancer, E6 oncoprotein, Marine sponges, Bioactive compounds, Molecular Docking, Salicylihalamide B.

ABSTRACT

Objective: Cervical cancer is the most leading cause of mortality and morbidity in women. Most of these are caused by human papilloma virus (HPV) which are sexually transmitted. Among 200 HPV types, high-risk HPV16 persists in humans and results in precancerous lesions and cervical cancer. The viral E6 oncoprotein which is necessary for malignant conversion of HPV 16 is used as the potential target for the inhibition of HPV infection. The present study aims to investigate the inhibitory activities of the seventy-four bioactive compounds from different marine organisms against the viral E6 oncoprotein of HPV16 using computational techniques. Methods: Virtual screening technique has been applied to identify the potent bioactive compounds against E6 oncoprotein of HPV16 using Molinspiration and is subjected to drug-likeliness assessment using the Molsoft server. Molecular docking was carried out for E6 protein (4XR8) with selected hits obtained from virtual screening method and their binding energies were determined. Further Molecular Dynamic Simulation (MDS) studies of the obtained protein-bioactive inhibitor complex were performed to analyze the stability and conformation. Results and Conclusion: Four potential hits were identified from virtual screening and finalized against HPV16. Molecular docking studies revealed Salicylihalamide B from Haliclona species has shown the better interaction with E6 oncoprotein and gives the best binding energy of -8.92 Kcal/mol. The MDS studies inferred that the complex was found to be steady after 40 ns. As an outcome, Salicylihalamide B plays a promising role against E6 protein of HPV16 and hence can act as a template for further studies on cervical cancer drug candidates.

INTRODUCTION

Human papilloma virus codes for 5.2% of all cancers worldwide. Cervical cancer is one of the significant mortality amongst women due to human papilloma virus infection. Human papilloma virus (HPVs) are small, circular double-stranded DNA viruses with a genome of approximately 8 kb (White *et al.*, 2012). HPV comprise more than 200 types of infections, among which the high-risk HPV types 16 and 18 are the main cause and account for about 70% of cervical cancer. One HPV type (HPV 16) emerges as profoundly connected with malignancies at a few distinctive anatomical locations such as cervix, penis, anus, oropharynx, esophagus (Liyanage *et al.*, 2013) and bladder (Husain *et al.*, 2009;

Mohanapriya Arumugam, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, Tamil Nadu, India. E-mail: mohanapriyaa @ vit.ac.in Li et al., 2011). HPV type 16 is the most oncogenic type, followed by type 18 as the next most virulent (Hoory et al., 2008). HPV16 belongs to the genus of Alpha-papilloma virus and a member of species 9. The genome organization of HPV16 is organized into three regions: an early region (E), a late region (L), and a noncoding long control region (LCR). The early region encodes six non- structural proteins: E1, E2, E4, E5, E6, and E7. Late region encodes two structural proteins: L1 and L2. The non-structural proteins E1, E2, E4, and E5 proteins are required for viral DNA replication, the E6 and E7 proteins cooperate to transform and immortalize cells, and the L1 and L2 proteins are needed for the production of viral particles (Ledwaba et al., 2004; Munger et al., 2004). Among the non-structural protein products, E6 protein plays a role in the induction and maintenance of cellular transformation. The HPV 16 E6 protein consists of 151 amino acids and has a molecular weight of 18 kDa with two zinc fingers and also has a high content of α -helical and β -sheet secondary structures (Tungteakkhun et al., 2008).

^{*}Corresponding Author

^{© 2018} Pavithra Dhamodharan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlikeUnported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).

There are different interacting partners of E6 protein, the first and most vital cellular target of E6 protein is p53. HPV E6 oncoprotein interacts with several other cellular targets such as E6-AP, p53, CBP/P300. The importance of p53mediated apoptosis has been recognized in terms of maintaining homeostasis and preventing neoplastic transformation. E6 forms a ternary complex with p53 and E6 associated protein (E6AP) resulting in the degradation of p53 via ubiquitination pathway (Huibregtse et al., 1991). E6 also interacts with transcriptional co-activators CBP/P300 is directly independent of proteins known to bind the co-activators, such as p53 (Patel et al., 1999). The E6 protein binds to three domains of CBP/P300 and affects the transcriptional activity of the co-activators. High-risk HPV E6 binds to E6-AP (E6 Associated Protein) inside its N-terminal substrate recognition domain (Huibregtse et al., 1993a), and formation of a stable E6-E6AP complex precedes association with p53, thereby redirecting the substrate specificity of E6AP towards p53 (Huibregtse et al., 1993b). Hence E6AP also plays an essential role in E6 directed degradation of p53. Compared to other cellular targets, Thomas et al. (1999) evidenced that p53 activities is controlled in association with E6-AP and E6* proteins and leads to the replication of the virus and undoubtedly an E6-p53 association gives fundamental importance in the pathogenesis of HPV and represents as an important therapeutic target for many important human cancers (Thomas et al., 1999).

Marine sponges have been positioned at the top because of the discovery of bioactive compounds with potential pharmaceutical applications. Specialists in the field of natural products chemistry propose that sponges have the potential to provide future drugs against important diseases such as a range of viral diseases, malaria, inflammations, immunosuppressive diseases and various malignant neoplasms (Alcaraz et al., 2006; Molinski et al., 2009; Simmons et al., 2005; Gordaliza et al., 2010). Sponges produce various natural components and metabolites by isolation and screening of bioactive substances lead to the discovery of several chemicals with antiviral properties (Sipkema et al., 2005). Therefore, marine sponges are considered as a prosperous source of chemical diversity and health benefits for developing drug candidates, cosmetics, nutritional supplements, and molecular probes that can be supported to enhance the healthy lifespan of humans (Perdicaris et al., 2013). Sponges of the genus Haliclona are noticeable for producing a variety of secondary metabolites, most commonly bioactive alkaloids. Our study focuses on the in silico identification of potential bioactive inhibitors from marine algal sources against cervical cancer which is caused by HPV16 E6 oncoprotein.

MATERIALS AND METHODS

Retrieval of E6 protein structure

The three-dimensional structure of E6 protein was retrieved from PDB and hence we considered the entry 4XR8 as a target for marine algal bioactive compounds. In contrast to all other entries of E6 protein, 4XR8 shows larger position availability in X-ray method with a resolution of 2.25 Å (http://www.uniprot. org/uniprot/P03126). The RCSB PDB (Research Collaboratory for Structural Bioinformatics Protein Data Bank) is a repository for three-dimensional structural information of large biomolecules such as proteins and nucleic acids.

Construction of ligand dataset from marine sources

Among marine invertebrates, marine sponges from phylum Porifera is the most prevailing group responsible for discovering a huge number of natural products, that have been used as a template to develop therapeutic drugs. These natural products have a wide range of therapeutic properties including antimicrobial, antioxidant, antihypertensive, anticoagulant, anticancer, anti-inflammatory, wound healing and immune modulator, and other medicinal effects (Perdicaris et al., 2013). The bioactive compounds from various marine organisms such as different types of algae, sponge, bacteria which can act against the viral protein E6 were collected from the literature. 74 bioactive compounds from marine organisms were collected which forms the ligand dataset. PubChem database provides information about the chemical compounds, structure and their biological activities. Structure Data File (SDF) of the bioactive compounds was retrieved from PubChem database and converted to PDB format using OpenBabelGUI (O'Boyle et al., 2011). Accordingly, compound structures were saved in MOL format, later it is converted to PDB using OpenBabelGUI.

Virtual Screening of bioactive compounds

74 bioactive compounds from marine sources were involved in this study (Michalak et al., 2015; Simmons et al., 2005; Jimenez et al., 2009; Hartog et al., 1999; Adams et al., 2013; Jiao et al., 2011; Pal et al., 2014; Plaza et al., 2010; Francavilla et al., 2012; Kakinuma et al., 2001; Pereira et al., 2012; Saeidnia et al., 2014; Asgharpour et al., 2015; Yu et al., 1981; Panayotova et al., 2013; Michiels et al., 2011; Karsten et al., 1998; Groniger et al., 2000; Gupta et al., 2011; Apt et al., 1995; Sajilata et al., 2008; García-Vilas et al., 2016; Krohn, 2007; Manam et al., 2005; Domozych et al., 2012; Murakami et al., 2001; Isbrucker et al., 2003; Oliveira et al., 2012; Ponder et al., 2011; Aoki et al., 2004). Virtual screening offers a computational prediction of binding affinity for a large set of compounds. Screening of large libraries of compounds can be performed using docking. The final outcomes are positioned to propose basic theories of how the ligands hinder the target, a key objective in lead optimization. Virtual screening technique is used to construct the libraries of the marine bioactive compounds and also filters out the relevant bioactive compounds against the viral protein E6 using two softwares such as Molinspiration and Molsoft. All the bioactive compounds were optimized using Argus lab 4.0.1 using AM1 (Austin model 1) force field (http://www. arguslab.com/arguslab.com/ArgusLab.html).

Physicochemical and drug-likeness property prediction

Molinspiration tool, (http://www.molinspiration. com/cgi-bin/properties) is used in this study to calculate the molecular properties of bioactive compounds. Lipinski's filter includes properties like molecular weight, ClogP, polar surface area, number of hydrogen bond donors and acceptors, number of atoms, violations, rotational bonds, and volume. The Druglikeness score of the bioactive compounds was predicted using Molsoft software (http://molsoft.com/mprop/). The qualitative concept drug-likeness reveals information about how a drug responds to components like bioavailability and also checks the toxicity of the compound. Theoretically, a drug-like substance has a log P range of -0.4 to 5.6, molecular weight 180 to 500 Daltons, molar refractivity of 40-130, which is related to the volume and molecular weight of the molecule, also it has 20-70 atoms and follow other Lipinski's rules (Ghose *et al.*, 1999).

Molecular docking studies

Molecular docking is the best way to estimate the interaction between two molecules (Arumugam et al., 2013). Thus, to refine the retrieved hits from the previous analysis, docking was performed for all the hit compounds with the target protein E6. AutoDock is an automated docking procedure for predicting the interaction of ligands with bio-macromolecular targets. The four Bioactive compounds such as ascorbic acid, frigocyclinone, salicylihalamides A and B sieved out from the virtual screening technique were docked against the viral protein E6 using AutoDock tools 4.2 (Morris et al., 2009). Hydrogen atoms are added to the protein structure and Kollman charges are added to the protein and saved in .pdbqt format. After detecting the root, the ligand files are saved in .pdbqt format. A Lamarckian genetic algorithm is used as a docking parameter to find globally optimized conformation. The grid box dimension was set to $60 \times 60 \times 60$ and for the remaining parameter default settings were applied. At the end of a docking with multiple runs, a cluster analysis was performed (Sundarrajan et al., 2014). The bioactive compounds were analyzed based on their binding energy values.

Molecular dynamics simulation studies

The molecular dynamics simulation (MDS) calculates the stability of the protein-ligand complex. The docked protein-ligand complex obtained from Autodock program was considered as starting model for MDS. It is used to investigate the thermodynamics of biological macromolecules and their complexes. MDS of the protein-ligand complex with lowest binding energy was performed using GROMACS 4.5.5 (Groningen Machine for Chemical Simulations). The protein topology file was prepared using GROMOS96 43a1 force field (Schuler *et al.*, 2001). Ligand topology file and force field parameter file were prepared using PRODRG server (Schüttelkopf *et al.*, 2004). The whole system was subjected to 50 ns MDS at 300 K temperature and 1 bar pressure. The potential energy fluctuations, Root mean square deviation of alpha carbon atoms, Root mean square fluctuation and radius of gyration were monitored.

RESULTS AND DISCUSSION

Role of E6 protein in HPV16

E6 protein is a major transforming protein and also acts as a critical factor in cervical carcinogenesis of HPV16. E6 binds with E6AP ubiquitin-protein ligase and inactivates P53 via proteasome degradation pathway thereby DNA damage and chromosomal instabilities occur which leads to cell proliferation and cancer development in humans. Therefore, to prevent this we manually selected 74 marine bioactive compounds from literature sources which can compete with E6 protein.

Virtual screening of bioactive compounds from marine sources

74 biologically active compounds from different marine organisms involved in this study have been listed in Table 1. The

2D structure file is given in S. Figure 1. Virtual screening involves evaluation of a large number of small compounds based on their several molecular properties, using computational methods. We subjected our bioactive compounds to virtual screening specifically to calculate physicochemical properties and drug likeliness score using Molinspiration and Molsoft softwares. The SMILES (Simplified Molecular-Input Line-Entry System) notation of the bioactive compounds were used to calculate the molecular properties and drug likeliness score. The compounds which obey Lipinski's rule were further screened using molecular docking and simulation studies. Lipinski's rule components which are molecular weight < 500, log P not greater than 5, Hydrogen bond donors not more than 5 and Hydrogen bond acceptors not more than 10, number of atoms from 20 to 70, 10 or fewer rotatable bonds. The properties like milogP, TPSA, number of atoms, hydrogen bond donors and acceptors, molecular weight and rotational bonds of the marine bioactive compounds were predicted (Table 2). 74 bioactive compounds were first subjected to molinspiration to check the physicochemical characteristics of the compound and as a result, we filtered 24 bioactive compounds which obey the Lipinski's rule. These compounds were further subjected to drug-likeness score prediction using molsoft. Four compounds show above 0.5 drug-likeness score was selected as a good drug candidate and proceeds for further studies. In Molsoft software also the SMILES notation is used to check the druglikeness score of the compounds. The drug-likeness score of the potential bioactive compounds is listed in Table 3. As an outcome of the virtual screening technique, we finalized four bioactive compounds such as Ascorbic acid from Ascophyllum Nodosum, Frigocyclinone from Streptomyces Griseus, Salicylihalamides A and B from Haliclona Species may have potential to act against the viral protein E6 and further investigated for molecular docking studies.

Molecular docking studies of E6 protein with bioactive inhibitors

Elucidation of ligand binding mechanism in the essential phase to achieve selective and potent drugs for any target. Therefore, the four bioactive compounds (Ascorbic acid, Frigocyclinone, Salicylihalamides A and B) were docked separately into the binding site of the target protein E6 using AutoDock 4.2. The Protein-ligand interaction binding energies give a better understanding about how well the drugs bind to the E6 protein molecule. Among the four bioactive compounds, Salicylihalamide B from Haliclona Species had shown the better interaction with E6 protein with a binding energy of -8.92 Kcal/mol. Ascorbic acid (-3.82), Frigocyclinone (-8.01), Salicylihalamide A (-8.76) have lesser binding energy values than Salicylihalamide B and their binding site residues were identified using Pymol (Table 4). The four bioactive compounds interacted with E6 protein and formed a complex which was visualized using pymol and their 2D interaction patterns were identified using Discovery studio visualizer (Figure 1). E6 protein (green) represented as a surface model and the ligands are represented as ball and stick model. The residues interacting with ascorbic acid form hydrogen bond interaction with aliphatic amino acids LEU99, LEU110 and hydrophilic amino acid ASP49. It also forms vanderwaals interaction with aliphatic amino acids

PRO112, CYS111, PRO109, ILE101, LYS115, LEU100 and carbon-hydrogen bond interaction with LEU110 (Figure 1e). Frigocyclinone forms hydrogen bond interaction with aromatic group TRP132 and aliphatic group LEU100, vanderwaals interaction with aliphatic groups LEU67, GLY107, LEU50, ILE101, SER74, GLY130, LEU99, Carbon-Hydrogen bond with SER71, strong hydrophobic pi-sigma interaction with LEU100 and ARG131 and hydrophobic pi-alkyl interaction with ARG102 and ARG131 (Figure 1f). Salicylihalamide A forms hydrogen bond interaction with hydrophilic ARG102 and hydrophobic CYS51, vanderwaals interaction with GLY130, LEU100, VAL53,

PHE45, TYR32, SER74, SER71, GLN107, ARG131, ILE101, hydrophobic pi-sigma interaction with VAL62, hydrophobic alkyl interaction with LEU67 and pi-alkyl interaction with LEU50, TRP132 (Figure 1g). Salicylihalamide B forms hydrogen bond interaction with ARG102 and CYS51, vanderwaals interaction with both aliphatic and aromatic amino acid groups VAL53, PHE45, TYR32, GLN107, SER71, SER74, ARG131, TRP132, GLY130, hydrophobic Alkyl interaction with LEU67 and LEU100 and strong pi-alkyl interaction with aliphatic groups VAL62 and LEU50 (Figure 1h).

Table 1: Dataset table – Seventy-four bioactive compo	ounds from marine source	s used for the study.
---	--------------------------	-----------------------

Bioactive Compounds	Compound Family	Algae	Algal Family	References
Docosahexaenoic acid	PUFA*	Schizotrychium	Thraustochytriacea	Hartog et al. (1999)
Eicosapentaenoic acid	PUFA*	Porphyridium cruentum	Porphyridiophyceae	Asgharpour et al. (2015)
Beta carotene	Carotenoids	Dunaliella salina	Dunaliellaceae	Hartog et al. (1999)
Lutein	Carotenoids	Muriellopsis	Chlorophyceae	Hartog et al. (1999)
Astaxanthin	Keto carotenoid	Hematococcus pluvialisis	Haematococcaceae	Hartog et al. (1999)
Griffithsin	Lectin	Griffithsia	Wrangeliaceae	Adams et al. (2013)
Fucoidan	Sulfated polysaacharide	Fucus vesciculosis	Fucaceae	Jiao <i>et al.</i> (2011)
Lambda carrageenan	Sulfated polysaacharide	Gigartina	Gigartinaceae	Jiao et al. (2011)
Phloroglucinol	Polyphenol	Ecklonia species	Lessoniaceae	Michalak et al. (2015)
Phycoerythrobilin	Phycobiliproteins	Callithamnion roseum	Callithamniaceae	Yu et al. (1981)
Dictyol C	Diterpenes	Dictyota ciliolate	Dictyotaceae	Michalak et al. (2015)
Dictyol H	Diterpenes	Dictyota ciliolate	Dictyotaceae	Michalak et al. (2015)
Alpha tocopherol	vitamin E	Ulva rigida	Ulvaceae	Panayotovo et al. (2013)
Ascorbic acid	Vitamin C	Ascophyllum Nodosum	Fucaceae	Michiels et al. (2011)
Beta glucans	Polysaacharide	Laminaria Digitata	Laminariceae	Michalak et al. (2015)
Laminarin	Polysaacharide	laminaria species	Laminariceae	Michalak et al. (2015)
Palythine	Mycosporine-like amino acid	Chaetomorpha aerea	Cladophoraceae	Karsten et al. (1998)
Shinorine	Mycosporine-like amino acid	Gelidium latifolium	Gelidiaceae	Groniger et al. (2000)
Dolabellanes	Diterpenes	Dictyota ciliolate	Dictyotacaea	Gupta et al. (2011)
Fucosterol	Sterols	Laminaria species	Laminariceae	Pal et al. (2014)
Desmosterol	Sterols	Palmaria species	Palmariaceae	Pal et al. (2014)
Agar	Sulfated polysaacharide	Gracilaria species	Gracilariaceae	Pal et al. (2014)
Fucoxanthin	Carotenoid	Macrocystis pyrifera	Laminariaceae	Apt et al. (1995)
Zeaxanthin	Carotenoid	Microcystis aeruginosa	Microcystaceae	Sajilata et al. (2008)
Dolastatin 15	Linear peptide	Dolabella auricularia	Aplysiidae	Simmons et al. (2005)
E7389	Macrocyclic polyether	Halichondria okadai	Halichondriidae	Simmons et al. (2005)
Discodermolide	Lactone	Discodermia dissolute	Theonellidae	Simmons et al. (2005)
LAF-389	E-Lactam peptide derivative	Jaspis digonoxea	Ancorinidae	Simmons et al. (2005)
Curacin A	Thiazole lipid	Lyngbya majuscula	Oscillatoriaceae	Simmons et al. (2005)
DMMC	Cyclic depsipeptide	Lyngbya majuscula	Oscillatoriaceae	Simmons et al. (2005)
Salinosporamide A	Bicyclic λ -lactam- β lactone	Salinospora species	Micromonosporaceae	Simmons et al. (2005)
Laulimalide	Macrolide	Cacospongia mycofijiensis	Thorectidae	Simmons et al. (2005)
Eleutherobin	Diterpene glycoside	Eleutherobia species	Alcyoniidae	Simmons et al. (2005)
Sarcodictyin A	Diterpene	Sarcodictyon roseum	Clavulariidae	Simmons et al. (2005

Skicylinkamiak (Merikami Parken)Chainidae Schemens et al. (2005)Skicylinkamiak (Merikami Parken)Maromenogen area:ChainidaeSimmus et al. (2005)ThiscealianDespispetidaMaromenogen area:IndemniagenSimmus et al. (2005)AssidderinPyrrole studiolaInsellaria specierIndemniagenSimmus et al. (2005)SchoolenshinPyrrole studiolaInsellaria specierIndenniagenSimmus et al. (2005)SchoolenshinPyrrole studiolaMaromenogen areaMarchalenSimmus et al. (2005)SchoolenshinMaromenogen areaMaromenogen areaMarchalenSimmus et al. (2007)AcrophriniAlkaloidAplysinia cropholinMarchalenSimmus et al. (2007)BoascinMarcrocyclic lutantSimplomyceics surverversitillutSimplomyceicsHaromenosperaceBoascinMarcrocyclic lutantSimplomyceicsThermonosperaceHarome et al. (2007)CapolastonesLatoneSimplomyceicsThermonosperaceHarome et al. (2007)DiarytomenikMaromenosperaceSimplomyceicsThermonosperaceHarome et al. (2007)Galastyrotic CPerodosquinolina antibicisSimplomyceicarceHarome et al. (2007)Hindanovici AAplysianter subscriftSimplomyceicarceHarome et al. (2007)Hindanovici BPepide antibicisSimplomyceicarceHarome et al. (2007)Hindanovici BPepide antibicisSimplomyceicarceHarome et al. (2007)Hindanovici BPepide antibicisSimplomyceicarceHarome et al.	Peloruside A	Macrocyclic lactone	Mycale hentscheli	Mycalidae	Simmons et al. (2005)
ThiscortilineDepispptideMicromonosporas marinaMicromonosporas costSimmons et al. (2005)AscildeminAromatic altaloidDidomanas speciesDidomañasSimmons et al. (2005)Lanellarin DPyrote altaloidDeryodendrili vargeetsVelatindazeSimmons et al. (2005)ES-255 (Spulsoine)Alkyl amin alcololMacrometr polynymaMateridasSimmons et al. (2005)Acrophysini IAlkaloidAphysina acrophobaAphysina SergionyretancesImmenz et al. (2007)Acrophysini IAlkoloidAphysina acrophobaSprejonyretancesJimmenz et al. (2007)BonacinMacrocyclis InteamSprejonyreta speciesSprejonyretancesJimmenz et al. (2007)DargenominiAlkoloidMicromonosprorecesMicromonosprorecesJimmenz et al. (2007)DargenominiAlkoloidMicromonosprorecesMicromonosprorecesJimmenz et al. (2007)DargenominiAlkoloidMicromonosprorecesJimmenz et al. (2007)DargenominiAlkoloidMicromonosprorecesJimmenz et al. (2007)Prigocyclinione antibioticSpreponyces speciesSpreponycetacceaeJimmenz et al. (2007)Bilmadomycin APeptide antibioticSpreponyces speciesSpreponycetacceaeJimmenz et al. (2007)Himadomycin APeptide antibioticSpreponycetacceaeJimmenz et al. (2007)KondosujinoneAntibioticSpreponycetacceaeJimmenz et al. (2007)Himadomycin BAntibioticSpreponycetacceaeJimenz et al. (2007)Himadomycin B	Salicylihalamide A	Polyketide	Haliclona species	Chalinidae	Simmons et al. (2005)
ThiscortilineDepispptideMicromonosporas marinaMicromonosporas costSimmons et al. (2005)AscildeminAromatic altaloidDidomanas speciesDidomañasSimmons et al. (2005)Lanellarin DPyrote altaloidDeryodendrili vargeetsVelatindazeSimmons et al. (2005)ES-255 (Spulsoine)Alkyl amin alcololMacrometr polynymaMateridasSimmons et al. (2005)Acrophysini IAlkaloidAphysina acrophobaAphysina SergionyretancesImmenz et al. (2007)Acrophysini IAlkoloidAphysina acrophobaSprejonyretancesJimmenz et al. (2007)BonacinMacrocyclis InteamSprejonyreta speciesSprejonyretancesJimmenz et al. (2007)DargenominiAlkoloidMicromonosprorecesMicromonosprorecesJimmenz et al. (2007)DargenominiAlkoloidMicromonosprorecesMicromonosprorecesJimmenz et al. (2007)DargenominiAlkoloidMicromonosprorecesJimmenz et al. (2007)DargenominiAlkoloidMicromonosprorecesJimmenz et al. (2007)Prigocyclinione antibioticSpreponyces speciesSpreponycetacceaeJimmenz et al. (2007)Bilmadomycin APeptide antibioticSpreponyces speciesSpreponycetacceaeJimmenz et al. (2007)Himadomycin APeptide antibioticSpreponycetacceaeJimmenz et al. (2007)KondosujinoneAntibioticSpreponycetacceaeJimmenz et al. (2007)Himadomycin BAntibioticSpreponycetacceaeJimenz et al. (2007)Himadomycin B	Salicylihalamide B	Polyketide	Haliclona species	Chalinidae	Simmons <i>et al.</i> (2005)
AscikideminAnomine ikkolodDidemon spectresDidemokaSimmons et al. (2005)Lanellurin DPyroles alkaloidI amellaria spectresVelatoidaeSimmons et al. (2005)Diety oberhofinPyroles alkaloidMactromers polynymaDiety defarlikkeSimmons et al. (2005)ES-255 (Spulosities)Alky almin alkoloidApyrinikae arayhophaMactridkeSimmons et al. (2005)ActropytsiniAlkoloidApyrinikaeJimenez et al. (2009)Simmons et al. (2005)AneroyystiniMacrosyclic lactamSireptomyces speciesSireptomycenaceaeJimenez et al. (2009)DianezinMacrosyclic lactamSireptomyces speciesSireptomycenaceaeJimenez et al. (2009)CapolectomsLactoneSireptomyces speciesSireptomycenaceaeJimenez et al. (2009)DianezinAlkaloidMicromonogora speciesSireptomycenaceaeJimenez et al. (2009)DianezinAlkaloidSireptomyces greaciaSireptomycenaceaeJimenez et al. (2009)DianezinomininAlkaloidSireptomyces greaciaSireptomycenaceaeJimenez et al. (2009)PingesyclinoniAlkaloidSireptomyces preciesSireptomycenaceaeJimenez et al. (2009)I hindingrishPaptida antibioticSireptomyces norbauSireptomycenaceaeJimenez et al. (2009)I hindingrishPaptida antibioticSireptomyces norbauSireptomycenaceaeJimenez et al. (2009)I hindingrishAntibioticsSireptomyces norbauSireptomycenaceaeJimenez et al. (2009)I hindin	2	-	-	Micromonasporaceae	
Lamelini DPyrrole alkalonLamelini a pyrcesVelatinidaeStimmons et al. (2005)DictyodendriiPyrroloearbazole derivativesDictyodendrilla verongformiaDictyodendrilla erongformiaMactridueStimmons et al. (2005)ES-255 (Spisalosine)Alky almin alcoholMactrimeris polympinMactridueStimmons et al. (2005)Acropyrisini IAlkaloidAlysina aronympinStregtomyres preciseStregtomyres aronympinInsence et al. (2007)BonactinMacroteriolide ambieticStregtomyres speciesStregtomyres aronymetal allowsJimence et al. (2009)ChandraminiyiniBearcoacinesActinomacupora speciesStregtomyres aronymetalJimence et al. (2009)DiazepisomicinAlkaloidMacromonapora speciesStregtomyres aroneJimence et al. (2009)DiazepisomicinAlkaloidMacromonapora speciesStregtomyres aroneJimence et al. (2009)DiazepisomicinAlkaloidMacromonapora speciesStregtomyres aroneJimence et al. (2009)HoliauspyroloPaptode ambioticStregtomyres preciesStregtomyres aroneJimence et al. (2009)Homalomyren APeptode ambioticStregtomyres reviesStregtomyres aroneJimence et al. (2009)Himalomyren BPettode ambioticStregtomyres reviesStregtomyres aroneJimence et al. (2009)LipolamyreinAnthracyclineStregtomyres reviesStregtomyretaceaeJimence et al. (2009)Kismodoquinone AAnthracyclineStregtomyretaceaeJimence et al. (2009)Lipolamyrein <td< td=""><td>Ascididemin</td><td></td><td>Didemnum species</td><td>•</td><td></td></td<>	Ascididemin		Didemnum species	•	
DictordendirinPyrroloculariolsDictordendirilia verongformisDictordendirilia verongformisDictordendiriliaSimmons et al. (2005)ES-283 (Spisalosine)Alkyl amino alcoholMactromeris polynymaMaetridaeSimmons et al. (2005)Arendybysini IAlkalidAphsina aerophohoAphsina aerophohoMaetridaeJimenez et al. (2009)AncesverticillactumMaetroterolida antibioticStreptomyces aeroerisStreptomyces aeroeJimenez et al. (2009)BonactinMaetroterolida antibioticStreptomyces aeroerisStreptomyces aeroeJimenez et al. (2009)CapolactonesLactoreStreptomyces aroecesJimenez et al. (2009)ChandrananinycinBeazonzinsActionaniapora speciesStreptomyces aroecesJimenez et al. (2009)ChandrananinycinBeazonzinsStreptomyces aroecesJimenez et al. (2009)ColonolChandrananinycinTetabydroquinoline antibioticStreptomyces aroecesJimenez et al. (2009)ColonolGlaciapyrrole CPyrido antibioticStreptomyces aroecasJimenez et al. (2009)Kohn et al. (2007)Himadomycin APeptide antibioticStreptomyces aroecasJimenez et al. (2009)Kohn et al. (2007)Himadomycin BPeptide antibioticStreptomyces aroecasJimenez et al. (2009)Kohn et al. (2007)JajolamycinArtibioticsStreptomyces aroecasJimenez et al. (2009)Kohn et al. (2007)Mino et al.Streptomyces aroecasStreptomyces aroecasJimenez et al. (2009)Mino et al. (2007)Himadomycin			1		
ES-285 (Spisaliosine)Alkyl amino alcoholMacromeris polyminMacridateSimunos et al. (2005)Acrophysinin IAlkaloidAphysina acrophobaAphysindateJimenez et al. (2009); Garcia-vilas et al. (2016)AurosverticillatamMacrocyclic lactamStreptomyces auroverticillataStreptomycetaceaeJimenez et al. (2009);BoasciinMacrocyclic lactamStreptomyces speciesStreptomycetaceaeJimenez et al. (2009);CaptolactonesLactoneStreptomyces speciesStreptomycetaceaeJimenez et al. (2009);DiazepinomicinAlkaloidMcromonogora speciesStreptomycetaceaeJimenez et al. (2009);DiazepinomicinAlkaloidMcromonogora speciesStreptomycetaceaeJimenez et al. (2009);Glaciapyrole CPytrolossajulierponesStreptomyces gresciesStreptomycetaceaeJimenez et al. (2009);Hinalonycin APeptide antibioticStreptomyces presciesStreptomycetaceaeJimenez et al. (2009);Hinalonycin APeptide antibioticStreptomyces presciesStreptomycetaceaeJimenez et al. (2009);Komodoquinon AAuttinesptineStreptomyces presciesStreptomycetaceaeJimenez et al. (2009);Komodoquinon AAuttinesptineStreptomyces speciesStreptomycetaceaeJimenez et al. (2009);Marinomycin BPeptide antibioticStreptomyces presciesStreptomycetaceaeJimenez et al. (2009);Marinomycin AAuttinesptineStreptomyces presciesStreptomycetaceaeJimenez et al. (2009);Marinomycin BAuttine		2			
ActorysminAlkaloidApysina aerophonAppsinidaeJinence et al. (2009); Gardia-vilae et al. (2009)AureoverticillatumMacrosyclic laciamStreptomyces aerosverticillatusStreptomycetaceaeJinnence et al. (2009)BonactinMacroterbide antibioticStreptomyces speciesStreptomycetaceaeJinnence et al. (2009)ChandranninycinBearoxazinesActinomadoru speciesThermomonoporaceaeJinnence et al. (2009)DiazepinonicinAlkaloidMicromonoporaceaeJinnence et al. (2009)PrigoscyclinoneAngucyclinone antibioticStreptomyces griensStreptomycetaceaeJinnence et al. (2009)Glacaryrole CPyrtoolossquiterponesStreptomyces griensStreptomycetaceaeJinnence et al. (2009)HelquinolineTettrahydroquinoline antibioticJanibacter linosusInterasporangiaceaeJinnence et al. (2009)Hinalonycin APeptde antibioticStreptomyces ParvulusStreptomycetaceaeJinnence et al. (2009)Konodoquinon AAntracyclineStreptomyces speciesStreptomycetaceaeJinnence et al. (2009)LajollamycinNito-tettene spino-fluctone-bacStreptomyces speciesStreptomycetaceaeJinnence et al. (2009)Marinomycin BAnthracyclineStreptomyces speciesMocromosporaceaeJinnence et al. (2009)Marinomycin BAnthracyclineStreptomyces speciesStreptomycetaceaeJinnence et al. (2009)Marinomycin BAnthracyclineStreptomyces speciesStreptomycetaceaeJinnence et al. (2009)Marinomycin BAn	5	2			
AurosverticillacamMacrosvetic lacamStreptomyces aurosverticillansStreptomyceaceaeJimencz et al. (2009)BonacinMacrostrobile antibioticStreptomyces speciesStreptomyceaceaeJimencz et al. (2009)CaprolacionesLaconeStreptomyces speciesStreptomyceaceaeJimencz et al. (2009)DiazepinomicinAlkaloidMecromonspora speciesMecromonosporaceaeJimencz et al. (2009)DiazepinomicinAlkaloidMecromonspora speciesMecromonosporaceaeJimencz et al. (2009)Glaciagyrolo CPyrolosequiterpenesStreptomyces griseatStreptomycencaeeJimencz et al. (2009)Hinalomycin APeptide antibioticStreptomyces preciseStreptomycearceaeJimencz et al. (2009)Hinalomycin BPeptide antibioticStreptomyces preciseStreptomycearceaeJimencz et al. (2009)Komodoginone AAnthracyclineStreptomyces preciseStreptomycearceaeJimencz et al. (2009)LajollamycinNitro-tetranes grino-Piactones-Streptomyces repeciseStreptomycearceaeJimencz et al. (2009)Marinoanycin BAnthracyclineStreptomyces repeciseNocardiopsacceaeJimencz et al. (2009)Marinoanycin BAnthracyclineStre		2			
BonetinMacrotorolide antibioticStreptomyces speciesStreptomycetaceaeJunenez et al. (2009)CapolactonesLactoneStreptomyces speciesStreptomycetaceaeJunenez et al. (2009)ChandrananimycinBenzoxazinesActinomadara speciesThermomonosporaceaeJunenez et al. (2009)DiazepinomicinAllaloidMicromonospor speciesMacromonosporaceaeJunenez et al. (2009)FrigocyclinoneAngucyclinone antibioticStreptomyces speciesStreptomycetaceaeJunenez et al. (2009)Glaciapyrtole CPyrtolossiquierpenesStreptomyces speciesStreptomycetaceaeJunenez et al. (2009)HelquinolineTetrahydroquinoline antibioticStreptomyces speciesStreptomycetaceaeJunenez et al. (2009)Himalomycin BPeptide antibioticStreptomyces ParvulusStreptomycetaceaeJunenez et al. (2009)Konodoquinone AAnthrasyclineStreptomyces nodrausStreptomycetaceaeJunenez et al. (2009)LajollamycinNitto-tetance spino-f-lactone-3- lactam antibioticStreptomyces nodrausStreptomycetaceaeJunenez et al. (2009)MixinaydaCyclic tetrapaptideMarinagoraMarine et al. (2009)Marin et al. (2009)MixinaydaStreptomyces speciesStreptomycetaceaeJunenez et al. (2009)MixinaydaCyclic tetrapaptideMarinagoraJunenez et al. (2009)MixinaydaCyclic tetrapaptideMarinagoraMarinagoraMixinaydaSteroidsDuradicila TertiadectaDuradicilaceaeJunenez et al. (2012)<			Aplysina aerophoba	Aplysinidae	Jimenez et al. (2009); Garcia-vilas et al. (2016)
CaprolationesLatoneStreptomyces peciesStreptomycetteceeJimenez et al. (2009)ChandmanaimycinBenzoxazinesActinomadura speciesThermonosporaceaeJimenez et al. (2009)DizeptinomicinAlkaloidMicromonsporaspeciesMicromonsporaceaeJimenez et al. (2009)FrigocyclinoneAnguyclinone antibioticStreptomyces reservesStreptomycettaceaeJimenez et al. (2009)Belaciaprole CPytrolosesquitepenesStreptomyces ParvulusStreptomyces reaceaeJimenez et al. (2009)HelquinolineTetrahydroquinoline antibioticStreptomyces ParvulusStreptomyces accaeeJimenez et al. (2009); Krohn et al. (2007)Himalomycin APeptide antibioticStreptomyces ParvulusStreptomyces caccaeeJimenez et al. (2009); Krohn et al. (2007)LajollamycinNitro-tetraene spino-Plactone->-Streptomyces peciesStreptomyces caccaeJimenez et al. (2009); Manam et al. (2007)MKN-349ACyclic tetrapaptideNocardiapsis speciesNocardiapsisaceaeJimenez et al. (2009)MKN-349ACyclic tetrapaptideNocardiapsis speciesNocardiapsicaceaeJimenez et al. (2009)Mitro-stareaciAntibioticsStreptomyces speciesStreptomycetaceaeJimenez et al. (2009)Glutathione (GSII)AntibioticsStreptomyces speciesNocardiapsis accaeJimenez et al. (2009)Glutathione (GSII)AntioxidantLokige okamuraiPhaecophytaPeretia et al. (2011)Glutathione (GSII)SterolGracilaria saliconitaGracelaria scatcaeSaeidiane et al.	Aureoverticillactam	Macrocyclic lactam	Streptomyces aureoverticillatus	Streptomycetaceae	Jimenez et al. (2009)
ChandrananimycinBenzosazinesActionandura speciesThermononosporaceaeJimenez et al. (2009)DiazepinomicinAlkaloidMicromonospora speciesMicromonosporaceaeJimenez et al. (2009)PriposegulinoneAngucyclinone antibioticStreptomyces griseusStreptomycetaceaeJimenez et al. (2009)GlaciagrytorTernhydroquinoline antibioticJanhacter linosusIntrasporangiaceaeJimenez et al. (2009)HelquinolineTernhydroquinoline antibioticStreptomycetaceaeJimenez et al. (2009)Kohn et al. (2007)Himalomycin APeptide antibioticStreptomyces ParvulasStreptomycetaceaeJimenez et al. (2009)Kohn et al. (2007)Komodoquinone AAnthracyclineStreptomyces speciesStreptomycetaceaeJimenez et al. (2009)Kohn et al. (2007)LajollamycinNitro-tetraene spiro-fl-lactone-λ- Isctam antibioticStreptomyces reperiesStreptomycetaceaeJimenez et al. (2009)Matinomycin BAnthracyclineStreptomyces speciesStreptomycetaceaeJimenez et al. (2009)Mustamycin BAntibioticsStreptomyces speciesStreptomycetaceaeJimenez et al. (2001)Mustamycin BSteroidsGracularia salcoraiaGracularia salcoraiaJonal	Bonactin	Macrotetrolide antibiotic	Streptomyces species	Streptomycetaceae	Jimenez <i>et al.</i> (2009)
DiazejniomicinAlkaloidMicromonospora speciesMicromonosporaceaeJimenez et al. (2009)FrigocyclinoneAngucyclinone antibioticStreptomyces griseusStreptomycetaceaeJimenez et al. (2009)Glaciapyrtole CPyrtolossequiterpenesStreptomyces griseusStreptomycetaceaeJimenez et al. (2009)HelquinolineTetrahydroquinoline antibioticJanubacet mususIntrasporangiaceaeJimenez et al. (2009)Himalonycin APeptide antibioticStreptomyces ParvulusStreptomycetaceaeJimenez et al. (2009)Komodoquinone AAnthracyclineStreptomyces speciesStreptomycetaceaeJimenez et al. (2009)LajollamycinNitro-tetnene spino-f-lacione-λ- lactam antiboticStreptomyces nodosusStreptomycetaceaeJimenez et al. (2009)Marinonycin BAntibioticsMariniaporaMarine actinomycetaJimenez et al. (2009)Mitro-tetnene spino-f-lacione-λ- lactam antibioticStreptomycetaceaeJimenez et al. (2009)Mitro-tetnene spino-f-lacione-λ- lactam antibioticStreptomycetaceaeJimenez et al. (2009)Marinonycin BAntibioticsMariniaporaMarine actinomycetaMarinonycin BAntibioticsStreptomycetaceaeJimenez et al. (2009)Mitro-tetnene spino-f-lacione-λ- lactam antibioticStreptomycetaceaeJimenez et al. (2009)Mitro-tetneteStreptomycetaceaeJimenez et al. (2009)Mitro-tetnolStreptomycetaceaeJimenez et al. (2009)Mitro-tetnolStreptomycetaceaeJimenez et al. (2012)Glatat	Caprolactones	Lactone	Streptomyces species	Streptomycetaceae	Jimenez et al. (2009)
FrigosyclinoneAngusyclinone antibioticStreptomyces griseusStreptomycetaceaeJimenez et al. (2009)Glaciapyrrole CPyrrolosesquiterpenesStreptomyces speciesStreptomycetaceaeJimenez et al. (2009)HelquinolineTetrahydroquinoline antibioticJanthacter limosusIntrasporangiaceaeJimenez et al. (2009)Himalonycin APeptide antibioticStreptomyces ParvulusStreptomycetaceaeJimenez et al. (2009); Krohn et al. (2007)Komodoquinone AAnthrasyclineStreptomyces ParvulusStreptomycetaceaeJimenez et al. (2009); Krohn et al. (2007)LajotlamycinNitro-tetranen spiro-Plactone-bStreptomyces nodosusStreptomycetaceaeJimenez et al. (2009); Krohn et al. (2007)Marinomycin BAnthrasyclineNocardiopsis speciesNocardiopsis celesJimenez et al. (2009); Manan et al. (2007)MKN-349ACyclic tetrapaptideNocardiopsis speciesNocardiopsis celesJimenez et al. (2009)MKN-349ACyclic tetrapaptideNocardiopsis speciesNocardiopsiceaeeJimenez et al. (2007)TritoxacarcinAntibioticsStreptomyces speciesStreptomyces et al. (2012)Glutathione (CSII)AntioxidatIsfreg odamuratiPhacophycaPrevina et al. (2012)Glutathione (CSII)SterolGracitaria salicorniaGracitariaceaeSaeidnia et al. (2012)AgaiannieMonounsturated Faty acidSynechocystis speciesMerismogediaceaePlaza et al. (2010)Palmitoleie acidMonounsturated Faty acidSynechocystis speciesMerismogediaceaePla	Chandrananimycin	Benzoxazines	Actinomadura species	Thermomonosporaceae	Jimenez et al. (2009)
Glaciapyrrole CPyrtolessequiterpenesStreptomyces speciesStreptomycetaceaeJinenez et al. (2009)HelquinolineTetrahydroquinoline antibioticJanthacter limosusIntrasporangiaceaeJinenez et al. (2009)Himalomycin APeptide antibioticStreptomyces ParvulusStreptomycetaceaeJinenez et al. (2009)Komodoquinone AAnthracyclineStreptomyces peciesStreptomycetaceaeJinenez et al. (2009)LajollanycinNitro-tetrace spiro-β-Jactone-λ- lactam antibioticStreptomyces peciesStreptomycetaceaeJinenez et al. (2009)Marino mycin BAnthracyclineNocardingosta speciesStreptomycetaceaeJinenez et al. (2009)Marino mycin BAnthracyclineNocardingosta speciesStreptomycetaceaeJinenez et al. (2009)Marino mycin BAnthracyclineNocardingosta speciesStreptomycetaceaeJinenez et al. (2009)Mixi-149ACyclic tetrapptideNocardingost speciesStreptomycetaceaeJinenez et al. (2009)PhytosterolsSteroidsDunaliella TetriolectaDunaliellaceaeFrancavilla et al. (2012)Glutathione (GSH)AntioxidantIshige okamuraiPhacaphytaKakinum et al. (2012)AylanPolysancharideUlvalesUlvalesUlvalpyceaeDomozych et al. (2012)YalanPolysancharideSymechocystis speciesMerismopediaceaePlaza et al. (2010)SqualinineAminosunated Faty acidSymechocystis speciesMerismopediaceaePlaza et al. (2010)SqualarineMonounsaturated Faty acid <td>Diazepinomicin</td> <td>Alkaloid</td> <td>Micromonospora species</td> <td>Micromonosporaceae</td> <td>Jimenez et al. (2009)</td>	Diazepinomicin	Alkaloid	Micromonospora species	Micromonosporaceae	Jimenez et al. (2009)
HelquinolineTetrahydroquinoline antibioticJanibacter linosusIntrasporangiaceaeJimenez et al. (2009)Himalomycin APeptide antibioticStreptomyces ParvulusStreptomycetaceaeJimenez et al. (2009); Krohn et al. (2007)Himalomycin BPeptide antibioticStreptomyces ParvulusStreptomycetaceaeJimenez et al. (2009); Krohn et al. (2007)Komodoquinone AAnthracyclineStreptomyces speciesStreptomycetaceaeJimenez et al. (2009); Krohn et al. (2009)Lajollamycin BNitro-tetrane sprico-factone2- lactam antibioticStreptomyces nodosusStreptomycetaceaeJimenez et al. (2009); Manam et al. (2005)Marinomycin BAntibioticsMarinisporaMarine actinomyceteJimenez et al. (2009)Jimenez et al. (2009)MKN-349ACyclic tetrapaptideNocardiopsis speciesStreptomycetaceaeJimenez et al. (2009)TriosacarcinAntibioticsStreptomyces speciesStreptomycetaceaeJimenez et al. (2019)Ghutathione (GSH)AntibioticaStreptomyces speciesStreptomycetaceaeJimenez et al. (2012)Ghutathione (GSH)AntibioticaSynechocystis speciesChlorophytaPereita et al. (2012)StatoStroptomyces speciesMerismopediaceaePlaza et al. (2010)SqualamineAminosteroidSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAminosteroidSynechocystis speciesMerismopediaceaePlaza et al. (2005)SobildotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (20	Frigocyclinone	Angucyclinone antibiotic	Streptomyces griseus	Streptomycetaceae	Jimenez et al. (2009)
Himalomycin APeptide antibioticStreptomyces ParvulusStreptomycetaceaeJimenez et al. (2009); Krohn et al. (2007)Himalomycin BPeptide antibioticStreptomyces ParvulusStreptomycetaceaeJimenez et al. (2009); Krohn et al. (2007)Komodoquinone AAntinacyclineStreptomyces speciesStreptomycetaceaeJimenez et al. (2009); Krohn et al. (2007)LajollamycinNitro-tetranee spiro-f-lactone-λ- lactam antibioticStreptomyces nodosusStreptomycetaceaeJimenez et al. (2009); Manam et al. (2005)Marinomycin BAntibioticsMarinisporaMarine actinomyceteJimenez et al. (2009); Manam et al. (2005)MKN-349ACyclic tetrapaptideNocardiopsis speciesNocardiopsiceaeeJimenez et al. (2009)PhytosterolsSteroidsDunaliella TertiolectaDunaliellaceaeFrancavilla et al. (2012)Glutathione (GSH)AntioxidantIshige okamuraiPhacophytaReakinuma et al. (2012)SteroidSteroidGarcularia saltcorniaGraculariaceaeSimmonsych et al. (2010)YolvolDiterpene alcoholSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAntinosteroidSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAnninosteroidSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAnninosteroidSynechocystis speciesSpongida speciesSpongidaeePlaza et al. (2005)SobildotinLinear peptideDollabella auriculariaAplysidaeSimmons et al. (2	Glaciapyrrole C	Pyrrolosesquiterpenes	Streptomyces species	Streptomycetaceae	Jimenez et al. (2009)
Himalonycin BPeptide antibioticStreptomyces ParvulusStreptomycetaceaeJimenez et al. (2007); Krohn et al. (2007)Komodoquinone AAnthracyclineStreptomyces speciesStreptomycetaceaeJimenez et al. (2009);LajollanycinNitto-Itraene spiro-F-latcone-λ-lactam antibioticStreptomyces nodosusStreptomycetaceaeJimenez et al. (2009);Marinonycin BAntibioticsMarinisporaMarine actinomycetaceaeJimenez et al. (2009)MKN-349ACyclic tetrapaptideNocardiapsis speciesNocardiapsaceaeJimenez et al. (2009)PhytosterolsSteroidsDunaliella TertiolectaDunaliellaceaeFrancavilla et al. (2012)Glutathione (GSH)AntioxidantIshige okamuraiPhaeophytaKakinuma et al. (2012)Beta-sitosterolSteroidGracilaria salicorniaGracilariaceaeSaeidnia et al. (2012)Beta-sitosterolSteroidSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAninosteroidSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualanineAninosteroidSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualanineAninosteroidSpnechocystis speciesMerismopediaceaePlaza et al. (2005)Agosterol ASteroidSpongia speciesSpongidageJimenez et al. (2005)SobildotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)SobildotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al.	Helquinoline	Tetrahydroquinoline antibiotic	Janibacter limosus	Intrasporangiaceae	Jimenez et al. (2009)
Komodoquinone AAnthracyclineStreptomyces speciesStreptomycetaceaeJimenez et al. (2009)LajollamycinNitro-tetraene spiro-β-lactone-λ- lactam antibioticsStreptomyces nodosusStreptomycetaceaeJimenez et al. (2009)Marino mycin BAntibioticsMarinisporaMarine actinomycetaJimenez et al. (2009)MKN-349ACyclic tetrapaptideNocardiopsis speciesNocardiopsaceaeJimenez et al. (2009)TrioxacarcinAntibioticsStreptomyces speciesStreptomycetaceaeJimenez et al. (2009)PhytosterolsSteroidsDunaliella TertiolectaDunaliellaceaeFrancavilla et al. (2012)Glutathione (GSH)AntioxidantIshige okamuraiPhaeophytaKakinuma et al. (2012)Glutathione (GSH)AntioxidantIshige okamuraiGracilariaceaeSaeidnia et al. (2012)Beta-sitosterolSteroidGracilaria salicorniaGracilariaceaeSaeidnia et al. (2012)PhytolDiterpene alcoholSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAminosteroidSqualsa canthiasSqualidaeSimmons et al. (2005)CemadotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)SobildotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)Agosterol ASteroidSpongia speciesSpongiidaeeJimenez et al. (2009)Dictyostatin-1PolykeideSpongia speciesSpongiidaeeJimenez et al. (2009)Laurenditerpenol <td>Himalomycin A</td> <td>Peptide antibiotic</td> <td>Streptomyces Parvulus</td> <td>Streptomycetaceae</td> <td>Jimenez et al. (2009); Krohn et al. (2007)</td>	Himalomycin A	Peptide antibiotic	Streptomyces Parvulus	Streptomycetaceae	Jimenez et al. (2009); Krohn et al. (2007)
LajollamycinNitro-tetraene spiro-β-lactone-λ- lactam antibioticStreptomyces nodosusStreptomycetaceaeJimenez et al. (2009); Manam et al. (2005)Marinomycin BAntibioticsMarinsporaMarine actinomyceteJimenez et al. (2009)MKN-349ACyclic tetrapaptideNocardiopsis speciesNocardiopsaceaeJimenez et al. (2009)TrioxacarcinAntibioticsStreptomyces speciesStreptomycetaceaeJimenez et al. (2009)PhytosterolsSteroidsDunaliella TertiolectaDunaliellaceaeFrancavilla et al. (2012)Glutathione (GSH)AntioxidantIshige okamuraiPhaeophytaKakinuma et al. (2011)Gamma-linolenic acidPUFACodium speciesChlorophytaPereira et al. (2012)Beta-sitosterolSterolGracilaria salicorniaGracilariaceaeSacidina et al. (2012)PhytolDiterpene alcoholSynechocystis speciesMerismopediaceaePlaza et al. (2012)PhytolDiterpene alcoholSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAminosteroidSqualus acanthiasSqualidaeSimmons et al. (2005)SobiliotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)Agosterol ASteroidSpongia speciesSpongiadeJimenez et al. (2009); Murakami et al. (2011)Dictyostatin-1PolyketideSpongia speciesSpongiadeJimenez et al. (2009); Oliviera et al. (2012)LissoclinolideFatty acidAscidanAscidaeeJimenez et al. (2009); Oliv	Himalomycin B	Peptide antibiotic	Streptomyces Parvulus	Streptomycetaceae	Jimenez et al. (2009); Krohn et al. (2007)
LajotamiyeinJactam antibioticSureptonyces noasiusSureptonycetaceaeJinenet et al. (2009); Munan et al. (2009)Marinomycin BAntibioticsMarinisporaMarine actinomyceteJinenez et al. (2009)MKN-349ACyclic tetrapaptideNocardiopsis speciesNocardiopsaceaeJinenez et al. (2009)TrioxacarcinAntibioticsStreptomyces speciesStreptomycetaceaeJinenez et al. (2009)PhytosterolsSteroidsDunaliella TertiolectaDunaliellaceaeFrancavilla et al. (2012)Glutathione (GSH)AntioxidantIshige okanuraiPhaeophytaKakinuma et al. (2012)Gamma-linolenic acidPUFACodium speciesChlorophytaPereira et al. (2012)Beta-sitosterolSterolGracilaria salicorniaGracilariaceaeSaeidnia et al. (2012)PhytolDiterpene alcoholSynechocystis speciesMerismopediaceaePlaza et al. (2012)PhytolDiterpene alcoholSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAminosteroidSqualus acanthiasSqualidaeSimmons et al. (2005)CemadotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)SobildotinLinear peptideSpongia speciesSpongii ageeJinenez et al. (2009); Isbrucker et al. (2001)Dictyostatin-1PolyketideSpongia speciesSpongii ageeJinenez et al. (2009); Oliviera et al. (2001)Linear peptideDilterpeneLaurencia intricataRhodomelaceaeJimenez et al. (2009); Oliviera et	Komodoquinone A	Anthracycline	Streptomyces species	Streptomycetaceae	Jimenez et al. (2009)
MKN-349ACyclic tetrapaptideNocarditopsis speciesNocarditopsiceaeeJimenez et al. (2009)TrioxacarcinAntibiticsStreptomyces speciesStreptomycetaceaeJimenez et al. (2009)PhytosterolsSteroidsDunaliella TertiolectaDunaliellaceaeFrancavilla et al. (2012)Glutathione (GSH)AntioxidantIshige okamuraiPhaeophytaKakinuma et al. (2011)Gamma-linolenic acidPUFACodium speciesChlorophytaPereira et al. (2012)Beta-sitosterolSterolGracilaria salicorniaGracilariaceaeSaeidnia et al. (2014)XylanPolysacharideUlvalesUlvophyceaeDomozych et al. (2010)PhytolDiterpene alcoholSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAminosteroidSqualus acanthiasSqualidaeSimmons et al. (2005)CemadotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)SoblidotinLinear peptideSpongia speciesSpongiidaeeJimenez et al. (2009); Murakami et al. (2010)Ditystatin-1PolyketideSpongia speciesSpongiidaeJimenez et al. (2009); Uviera et al. (2001)Ditystatin-1PolyketideSpongia speciesSpongiidaeeJimenez et al. (2009); Oliviera et al. (2012)LissoclinolideFatty acidAscidianAscidiaeaJimenez et al. (2009); Oliviera et al. (2012)LissoclinolideFatty acidAscidianAscidiaeaJimenez et al. (2009); Ponder et al. (2012)	Lajollamycin		Streptomyces nodosus	Streptomycetaceae	Jimenez et al. (2009); Manam et al. (2005)
TrioxacarcinAntibioticsStreptomyces speciesStreptomycetaceaeJimenez et al. (2009)PhytosterolsSteroidsDunaliella TertiolectaDunaliellaceaeFrancavilla et al. (2012)Glutathione (GSH)AntioxidantIshige okamuraiPhaeophytaKakinuma et al. (2011)Gamma-linolenic acidPUFACodium speciesChlorophytaPereira et al. (2012)Beta-sitosterolSteroidGracilaria salicorniaGracilariaceaeSaeidnia et al. (2014)XylanPolysaacharideUlvalesUlvophyceaeDomozych et al. (2012)PhytolDiterpene alcoholSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAminosteroidSqualus acanthiasSqualidaeSimmons et al. (2005)CemadotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)SobildotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)Dictyostatin-1PolyketideSpongia speciesSpongiidaeJimenez et al. (2009); Murakami et al. (2012)LaurenditerpenolDiterpeneLaurencia intricataRhodomelaceaeJimenez et al. (2009); Oliviera et al. (2012)LaurenditerpenolAtlaloidXestospongia speciesPoerosiidaeJimenez et al. (2009); Oliviera et al. (2012)LaurenditerpenolAtlaloidXestospongia speciesPerosiidaeJimenez et al. (2009); Oliviera et al. (2012)LaurenditerpenolAtlaloidXestospongia speciesPerosiidaeJimenez et al. (2009); Oliviera et al. (201	Marinomycin B	Antibiotics	Marinispora	Marine actinomycete	Jimenez et al. (2009)
PhytosterolsSteroidsDunaliella TertiolectaDunaliellaceaeFrancavilla et al. (2012)Glutathione (GSH)AntioxidantIshige okamuraiPhaeophytaKakinuma et al. (2001)Gamma-linolenic acidPUFACodium speciesChlorophytaPereira et al. (2012)Beta-sitosterolSterolGracilaria salicorniaGracilariaceaeSaeidnia et al. (2014)XylanPolysaacharideUlvalesUlvophyceaeDomozych et al. (2012)PhytolDiterpene alcoholSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAminosteroidSqualus acanthiasSqualidaeSimmons et al. (2005)CemadotinLinear peptideDollabella auriculariaAphysiidaeSimmons et al. (2005)SoblidotinLinear peptideSpongia speciesSpongiidaeJimenez et al. (2009); Murakami et al. (2001)Dictyostatin-1PolyketideSpongia speciesSpongiidaeJimenez et al. (2009); Murakami et al. (2012)LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009); Oliviera et al. (2003)LaurenditerpenolDiterpeneLaurencia intricataRhodomelaceaeJimenez et al. (2009); Oliviera et al. (2012)LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009); Ponder et al. (2011)	MKN-349A	Cyclic tetrapaptide	Nocardiopsis species	Nocardiopsaceae	Jimenez et al. (2009)
Glutathione (GSH)AntioxidantIshige okamuraiPhaeophytaKakinuma et al. (2001)Gamma-linolenic acidPUFACodium speciesChlorophytaPereira et al. (2012)Beta-sitosterolSterolGracilaria salicorniaGracilariaceaeSaeidnia et al. (2014)XylanPolysaacharideUlvalesUlvophyceaeDomozych et al. (2012)PhytolDiterpene alcoholSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAminosteroidSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)SoblidotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)Agosterol ASteroidSpongia speciesSpongiidaeJimenez et al. (2009); Murakami et al. (2010)Dietyostatin-1PolyketideSpongia speciesSpongiidaeJimenez et al. (2009); Oliviera et al. (2020);LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009); Oliviera et al. (2012)LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009); Oliviera et al. (2012)Lissoclin	Trioxacarcin	Antibiotics	Streptomyces species	Streptomycetaceae	Jimenez et al. (2009)
Gamma-linolenic acidPUFACodium speciesChlorophytaPereira et al. (2012)Beta-sitosterolSterolGracilaria salicorniaGracilariaceaeSaeidnia et al. (2014)XylanPolysaacharideUlvalesUlvophyceaeDomozych et al. (2012)PhytolDiterpene alcoholSynechocystis speciesMerismopediaceaePlaza et al. (2010)Palmitoleic acidMonounsaturated Fatty acidSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAminosteroidSqualus acanthiasSqualidaeSimmons et al. (2005)CemadotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)SoblidotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)Agosterol ASteroidSpongia speciesSpongiidaeJimenez et al. (2009); Murakami et al. (2001)Dictyostatin-1PolyketideSpongia speciesSpongiidaeJimenez et al. (2009); Oliviera et al. (2012)LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009); Oliviera et al. (2012)NeoamphimedineAlkaloidXestospongia speciesPetrosiidaeJimenez et al. (2009); Ponder et al. (2012)	Phytosterols	Steroids	Dunaliella Tertiolecta	Dunaliellaceae	Francavilla et al. (2012)
Beta-sitosterolSterolGracilaria salicorniaGracilariaceaeSacidnia et al. (2014)XylanPolysaacharideUlvalesUlvophyceaeDomozych et al. (2012)PhytolDiterpene alcoholSynechocystis speciesMerismopediaceaePlaza et al. (2010)Palmitoleic acidMonounsaturated Fatty acidSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAminosteroidSqualus acanthiasSqualidaeSimmons et al. (2005)CemadotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)SobildotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)Agosterol ASteroidSpongia speciesSpongii ageciesSpongiidaeJimenez et al. (2009); Murakami et al. (2001)Dictyostatin-1PolyketideSpongia speciesSpongiidaeJimenez et al. (2009); Oliviera et al. (2012)LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009); Oliviera et al. (2012)NeoamphimedineAlkaloidXestospongia speciesPetrosiidaeJimenez et al. (2009); Ponder et al. (2011)	Glutathione (GSH)	Antioxidant	Ishige okamurai	Phaeophyta	Kakinuma et al. (2001)
XylanPolysacharideUlvalesUlvophyceaeDomozych et al. (2012)PhytolDiterpene alcoholSynechocystis speciesMerismopediaceaePlaza et al. (2010)Palmitoleic acidMonounsaturated Fatty acidSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAminosteroidSqualus acanthiasSqualidaeSimmons et al. (2005)CemadotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)SoblidotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)Agosterol ASteroidSpongia speciesSpongiidaeJimenez et al. (2009); Murakami et al. (2001)Dictyostatin-1PolyketideSpongia speciesSpongiidaeJimenez et al. (2009); Isbrucker et al. (2012)LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009); Oliviera et al. (2012)NeoamphimedineAlkaloidXestospongia speciesPetrosiidaeJimenez et al. (2009); Ponder et al. (2011)	Gamma-linolenic acid	PUFA	Codium species	Chlorophyta	Pereira et al. (2012)
PhytolDiterpene alcoholSynechocystis speciesMerismopediaceaePlaza et al. (2010)Palmitoleic acidMonounsaturated Fatty acidSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAminosteroidSqualus acanthiasSqualidaeSimmons et al. (2005)CemadotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)SoblidotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)Agosterol ASteroidSpongia speciesSpongiidaeJimenez et al. (2009); Murakami et al. (2001)Dictyostatin-1PolyketideSpongia speciesSpongiidaeJimenez et al. (2009); Isbrucker et al. (2012)LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009); Oliviera et al. (2012)NeoamphimedineAlkaloidXestospongia speciesPetrosiidaeJimenez et al. (2009); Ponder et al. (2011)	Beta-sitosterol	Sterol	Gracilaria salicornia	Gracilariaceae	Saeidnia et al. (2014)
Palmitoleic acidMonounsaturated Fatty acidSynechocystis speciesMerismopediaceaePlaza et al. (2010)SqualamineAminosteroidSqualus acanthiasSqualidaeSimmons et al. (2005)CemadotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)SoblidotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)Agosterol ASteroidSpongia speciesSpongiidaeJimenez et al. (2009); Murakami et al. (2001)Dictyostatin-1PolyketideSpongia speciesSpongiidaeJimenez et al. (2009); Isbrucker et al. (2003)LaurenditerpenolDiterpeneLaurencia intricataRhodomelaceaeJimenez et al. (2009); Oliviera et al. (2012)LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009); Ponder et al. (2011)NeoamphimedineAlkaloidXestospongia speciesPetrosiidaeJimenez et al. (2009); Ponder et al. (2011)	Xylan	Polysaacharide	Ulvales	Ulvophyceae	Domozych et al. (2012)
SqualamineAminosteroidSqualus acanthiasSqualidaeSimmons et al. (2005)CemadotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)SoblidotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)Agosterol ASteroidSpongia speciesSpongiia speciesSpongiidaeJimenez et al. (2009); Murakami et al. (2001)Dictyostatin-1PolyketideSpongia speciesSpongiidaeJimenez et al. (2009); Isbrucker et al. (2003)LaurenditerpenolDiterpeneLaurencia intricataRhodomelaceaeJimenez et al. (2009); Oliviera et al. (2012)LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009); Ponder et al. (2011)	Phytol	Diterpene alcohol	Synechocystis species	Merismopediaceae	Plaza et al. (2010)
CemadotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)SoblidotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)Agosterol ASteroidSpongia speciesSpongiidaeJimenez et al. (2009); Murakami et al. (2001)Dictyostatin-1PolyketideSpongia speciesSpongiidaeJimenez et al. (2009); Isbrucker et al. (2003)LaurenditerpenolDiterpeneLaurencia intricataRhodomelaceaeJimenez et al. (2009); Oliviera et al. (2012)LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009); Ponder et al. (2011)NeoamphimedineAlkaloidXestospongia speciesPetrosiidaeJimenez et al. (2009); Ponder et al. (2011)	Palmitoleic acid	Monounsaturated Fatty acid	Synechocystis species	Merismopediaceae	Plaza et al. (2010)
SoblidotinLinear peptideDollabella auriculariaAplysiidaeSimmons et al. (2005)Agosterol ASteroidSpongia speciesSpongiidaeJimenez et al. (2009); Murakami et al. (2001)Dictyostatin-1PolyketideSpongia speciesSpongiidaeJimenez et al. (2009); Isbrucker et al. (2003)LaurenditerpenolDiterpeneLaurencia intricataRhodomelaceaeJimenez et al. (2009); Oliviera et al. (2012)LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009); Ponder et al. (2011)NeoamphimedineAlkaloidXestospongia speciesPetrosiidaeJimenez et al. (2009); Ponder et al. (2011)	Squalamine	Aminosteroid	Squalus acanthias	Squalidae	Simmons et al. (2005)
Agosterol ASteroidSpongia speciesSpongiidaeJimenez et al. (2009); Murakami et al. (2001)Dictyostatin-1PolyketideSpongia speciesSpongiidaeJimenez et al. (2009); Isbrucker et al. (2003)LaurenditerpenolDiterpeneLaurencia intricataRhodomelaceaeJimenez et al. (2009); Oliviera et al. (2012)LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009); Oliviera et al. (2010)NeoamphimedineAlkaloidXestospongia speciesPetrosiidaeJimenez et al. (2009); Ponder et al. (2011)	Cemadotin	Linear peptide	Dollabella auricularia	Aplysiidae	Simmons <i>et al.</i> (2005)
Dictyostatin-1PolyketideSpongia speciesSpongiidaeJimenez et al. (2009); Isbrucker et al. (2003)LaurenditerpenolDiterpeneLaurencia intricataRhodomelaceaeJimenez et al. (2009); Oliviera et al. (2012)LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009)NeoamphimedineAlkaloidXestospongia speciesPetrosiidaeJimenez et al. (2009); Ponder et al. (2011)	Soblidotin	Linear peptide	Dollabella auricularia	Aplysiidae	Simmons et al. (2005)
LaurenditerpenolDiterpeneLaurencia intricataRhodomelaceaeJimenez et al. (2009); Oliviera et al. (2012)LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009)NeoamphimedineAlkaloidXestospongia speciesPetrosiidaeJimenez et al. (2009); Ponder et al. (2011)	Agosterol A	Steroid	Spongia species	Spongiidae	Jimenez et al. (2009); Murakami et al. (2001)
LissoclinolideFatty acidAscidianAscidiaceaJimenez et al. (2009)NeoamphimedineAlkaloidXestospongia speciesPetrosiidaeJimenez et al. (2009); Ponder et al. (2011)	Dictyostatin-1	Polyketide	Spongia species	Spongiidae	Jimenez et al. (2009); Isbrucker et al. (2003)
Neoamphimedine Alkaloid Xestospongia species Petrosiidae Jimenez et al. (2009); Ponder et al. (2011)	Laurenditerpenol	Diterpene	Laurencia intricata	Rhodomelaceae	Jimenez et al. (2009); Oliviera et al. (2012)
NeoamphimedineAlkaloidXestospongia speciesPetrosiidaeJimenez et al. (2009); Ponder et al. (2011)	Lissoclinolide	Fatty acid	Ascidian	Ascidiacea	Jimenez et al. (2009)
Smenospongorine Seskviterpene Dactylospongia elegans Thorectidae Jimenez et al. (2009); Aoki et al. (2004)	Neoamphimedine	Alkaloid	Xestospongia species	Petrosiidae	Jimenez et al. (2009); Ponder et al. (2011)
	Smenospongorine	Seskviterpene	Dactylospongia elegans	Thorectidae	Jimenez et al. (2009); Aoki et al. (2004)

*PUFA- Polyunsaturated fatty acid.

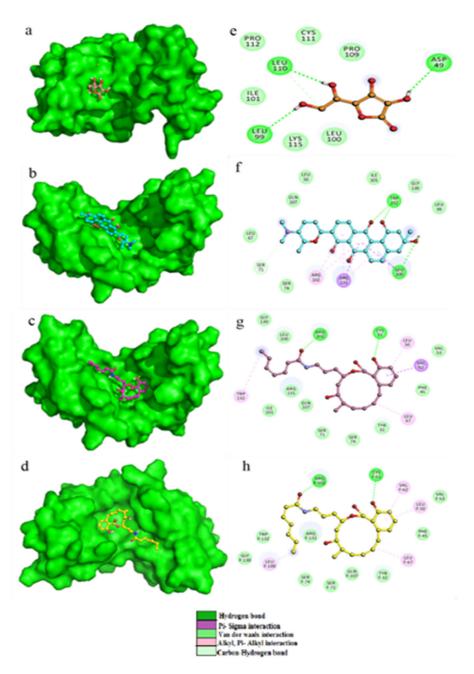


Fig. 1: a: Ascorbic acid-E6 protein complex, b: Frigocyclinone-E6 protein complex, c: Salicylihalamide A-E6 protein complex, d: Salicylihalamide B-E6 protein complex, e-h: 2D interaction pattern of four ligands with E6.

Table 2: Molecular properties of Bioactive compounds predicted using Molinspiration property calculator.

S. No	Bioactive Compounds	miLogP	TPSA	Atoms	MW	#ON	#OHNH	#Violations	#ROTB	Volume
1	Ascorbic acid	-1.4	107.22	12	176.12	6	4	0	2	139.71
2	Frigocyclinone	3.62	104.14	34	463.53	7	2	0	2	418.12
3	Salicylihalamide A	4.32	95.86	32	439.55	6	3	0	6	425.87
4	Salicylihalamide B	4.32	95.86	32	439.55	6	3	0	6	425.87

miLogP: LogP (partition coefficient); TPSA: topological polar surface area; MW: Molecular weight; #ON: number of hydrogen bond acceptors; #OHNH: number of hydrogen bond donors; #ROTB: number of rotational bonds.

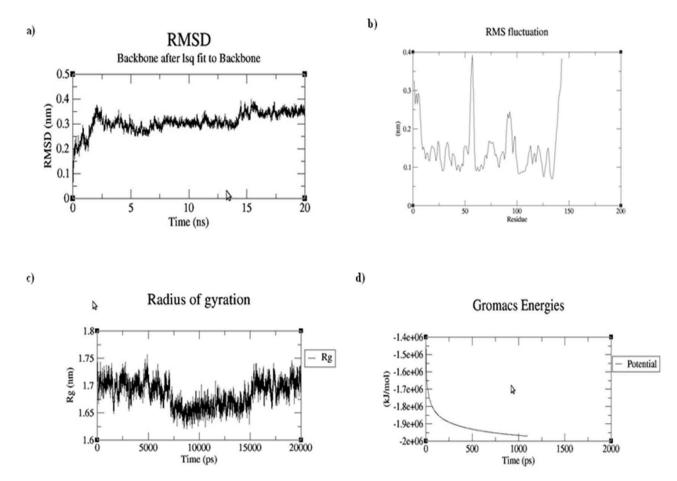


Fig. 2: a: RMSD plot of the backbone atoms of the E6 protein-Salicylihalamide B complex, b: RMSF shows the backbone of the fluctuation of atoms of E6 protein-Salicylihalamide B complex, c: Radius of gyration of the protein has an average value at 1.74 nm, d: Potential energy plot depicting the stability of the protein.

 Table 3: Druglikeness prediction of bioactive compounds using Molsoft software.

S. No	Bioactive Compounds	Druglikeness score
1	Ascorbic acid	0.84
2 Frigocyclinone		0.93
3 Salicylihalamide A		1.01
4 Salicylihalamide B		1.01

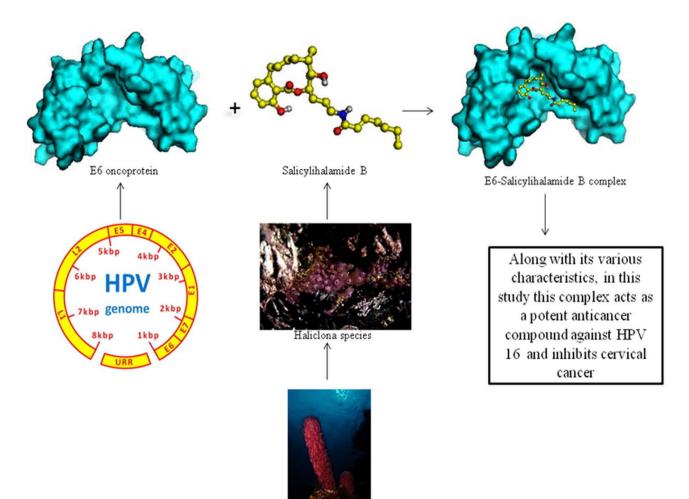
Interacting residues such as LEU100, TRP132, SER74, ARG102, LEU50 were found in all the docked complexes. The presence of residues at their respective positions are important for the binding of E6 protein. A group of arginine residues forms the rim cap over the E6 helix groove and plays a remunerative role in the binding and recognition of small molecules (Rietz *et al.*, 2016). The aromatic group of tryptophan is found to involve in the pi-alkyl stacking interaction. The rim arginine ARG102 forms a hydrogen bond with Salicylihalamide B. TRP132 and ARG131 found to contribute to the interaction through vanderwaal's forces and lies in the C-terminal region of the E6 protein. As an outcome, Salicylihalamide B gives the best binding interaction pattern with E6 protein and also it may act as a lead molecule to compete with E6-E6AP complex and prevents its activation.

The Salicylihalamide B and E6 protein complex are then further validated for its stability using molecular dynamic simulation studies.

Molecular dynamics and simulation analysis

In order to examine the conformational stability, MDS was performed. From molecular docking studies, Salicylihalamide B – HPV16 E6 protein complex was subjected to MDS studies. GROMACS - 4.5.5 version is used to check the stability and the compactness of the complex. GROMOS96 43a1 forcefield was used for E6 protein. GROMOS87/GROMACS file with polar/Aromatic hydrogens is used as drg.gro file and the ligand topology file was used as drg.itp file. The lowest binding energy conformation was taken as initial conformation and solvated using SPC (single point charge) water molecule and neutralized by adding chlorine ions. Finally, 50 ns MD simulation was performed for the E6 Protein-Salicylihalamide B complex and the results were monitored. The entire system remained steady all through the MD simulation process. Various trajectory analysis like potential energy, RMSD, and RMSF of the backbone atoms, radius of gyration of the protein was monitored and they were analyzed to interpret the convergence, fluctuations and the stability of the

protein-ligand complexes. RMSD analysis shows the Proteinligand complex exhibits numerous smaller peaks, and at 40 ns it started to converge and attained stability (Figure 2a). The protein structural flexibility during the simulation process was noticeable from the small drifts observed in the RMSD plot. The dynamic stability of the Protein-ligand complex was also determined based on the root mean square fluctuation which reflects the mobility of the residues around its mean position. RMSF shows major fluctuations at the residues 75, 110 and 130 and minor fluctuations in the residues 30, 60 and 80 (Figure 2b). The radius of gyration maintains the compactness of protein at 1.75 nm (Figure 2c). The potential energy plot shows the protein-ligand complex reaches its stability close to 460 ps (Figure 2d). Overview of this study is presented in Figure 3. At the end of the simulation period, the complex undergoes minor conformational changes and attains its stability.


CONCLUSION

The results obtained from the present work shows that the bioactive compounds from marine algal sources also play a vital role in interacting with Human papilloma virus (HPV 16) which causes oral and cervical cancers in humans. Our results suggest that Salicylihalamide B from *Haliclona species* (sponge) obeyed all the rules of virtual screening and can precisely bind to the active pocket of the E6 protein with better conformational stability. Hence, Salicylihalamide B can be proposed as the potent bioactive compound against target E6 of HPV16 and may be furthermore explored as an anticancer drug. Along with potential anti-tumor property, in this study, Salicylihalamide B may conceivably be considered to have the capability of anticancer property.

 Table 4: Binding energy and interacting residues of selected bioactive compounds with E6 protein.

S. No.	Ligands	Binding Energy*	Binding site residues involved in interactions
1	Ascorbic acid	-3.82	LEU110, LEU99, ASP49, LYS115
2	Frigocyclinone	-8.01	TRP132, LEU100
3	Salicylihalimide A	-8.76	ARG102, CYS51
4	Salicylihalimide B	-8.92	ARG102, CYS51

*Kcal/mol.

Marine sponge Fig. 3: Overview of this study.

ACKNOWLEDGMENT

We thank Vellore Institute of Technology University for the Computational facility.

REFERENCES

Adams C, Naturopath. Red Algae Extract Treats Ebola – and HIV, SARS and HCV. PLoS ONE. 2013; 8(5).

Alcaraz MJ, Payá M. Marine sponge metabolites for the control of inflammatory diseases. Current Opinion in Investigational Drugs. 2006; 7:974-979.

Aoki S, Kong D, Matsui K, Rachmat R, Kobayashi M. Sesquiterpene Aminoquinones, from a Marine Sponge, Induce Erythroid Differentiation in Human Chronic Myelogenous Leukemia, K562 Cells. Chemical and Pharmaceutical Bulletin. 2004; 52(8):935-937.

Apt KE, Clendennen SK, Powers DA, Grossman AR. The gene family encoding the fucoxanthin chlorophyll proteins from the brown alga *Macrocystis pyrifera*. Molecular and general genetics MGG. 1995; 246(4):455-464.

Arumugam M, Lulu S, Kumari S, Kumari NVD. Computational screening and evaluation of bioactive compounds against NS3 helicase of HCV. International Journal of Pharmacy and Pharmaceutical Sciences 2013; 5(4):370-376.

Asgharpour M, Rodgers B, Hestekin JA. Eicosapentaenoic Acid from Porphyridium Cruentum: Increasing Growth and Productivity of Microalgae for Pharmaceutical Products. Energies. 2015; 8:10487-10503.

Domozych DS, Cianci M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WGT. The cell walls of green algae: a journey through evolution and diversity. Frontiers in plant science 2012; 3:1-7.

Francavilla M, Colaianna, Zotti M, Morgese MG, Trotta P, Tucci P, Schiavone S, Cuomo V, Trabace L. Extraction, characterization and in vivo neuromodulatory activity of phytosterols from microalga Dunaliella tertiolecta. Current Medicinal Chemistry. 2012; 19(18):3058-67.

García-Vilas JA, Martínez-Poveda B, Quesada AR, Medina MA. Aeroplysinin-1, a Sponge-Derived Multi-Targeted Bioactive Marine Drug. Marine Drugs. 2016; 14(1):1-12.

Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledgebased approach in designing combinatorial or medicinal chemistry libraries for drug discovery. Journal of Combinatorial Chemistry 1999; 1(1):55-68.

Gordaliza M. Cytotoxic terpene quinones from marine sponges. Marine Drugs. 2010; 8:2849-2870.

Groniger A, Sinha RP, Klisch M, Hader D-P. Photoprotective compounds in cyanobacteria, phytoplankton and macroalgae — A database. Journal of Photochemistry and Photobiology B: Biology. 2000; 5:15-122.

Gupta S, Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science & Technology. 2011; 1-12.

Hartog K, Intern RJD. Bioactive Compounds Derived from Marine Algal Species. Journal of Phycology. 1999; 35.2:215-226.

Hoory T, Monie A, Gravitt P, Wu TC. Molecular Epidemiology of Human Papillomavirus. Journal of the Formosan Medical Association 2008; 107(3):198-217.

Huibregtse JM, Scheffner M, Howley PM. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. The EMBO Journal. 1991; 10:4129-4135.

Huibregtse JM, Scheffner M, Howley PM. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Molecular and Cellular Biology. 1993a; 13:775-784.

Huibregtse JM, Scheffner M, Howley PM. Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Molecular and Cellular Biology. 1993b; 13:4918-4927.

Husain E, Prowse DM, Ktori E, Shaikh T, Yagoob M, Junaid I, Baithun S. Human papillomavirus is detected in transitional cell carcinoma arising in renal transplant recipients. Pathology. 2009; 41(3):245-7.

Isbrucker RA, Cummins J, Pomponi SA, Longley RE, Wright AE. Tubulin polymerizing activity of dictyostatin-1, a polyketide of marine sponge origin. Biochemical Pharmacology. 2003; 66(1):75-82.

Jiao G, Yu G, Zhang J, Ewart HS. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae. Marine Drugs. 2011; 9:196-223.

Jimenez JT, Šturdíková M, Šturdík E. Natural products of marine origin and their perspectives in the discovery of new anticancer drugs. Acta Chimica Slovaca 2009; 2(2):63-74.

Kakinuma M, Park CS, Amano H. Distribution of free L-cysteine and glutathione in seaweeds. Fisheries science. 2001; 67:194-196.

Karsten U, Sawall T, Hanelt D, Bischof K, Figueroa FL, Moya A-F, Wiencke C. An inventory of UV-absorbing mycosporine-like amino acids in macroalgae from polar to warm temperate regions. Botanica Marina. 1998; 41:443-453.

Krohn K. Dictionary of Marine Natural Products with CD-ROM, JW Blunt, MHG. Munro (Eds.). CRC Press Book 2007; 993-1184.

Ledwaba T, Dlamini Z, Naicker S, Bhoola K. Molecular genetics of human cervical cancer: role of papillomavirus and the apoptotic cascade. Biological Chemistry. 2004; 385:671-682.

Li N, Yang L, Zhang Y, Zhao P, Zheng T, Dai M. Human papillomavirus infection and bladder cancer risk: A meta-analysis. The Journal of Infectious Diseases. 2011; 204(2):217-223.

Liyanage SS, Segelov E, Garland SM, Tabrizi SN, Seale H, Crowe PJ, Dwyer DE, Barbour A, Newall AT, Malik A, Macintyre CR. Role of human papillomaviruses in esophageal squamous cell carcinoma. Asia Pacific Journal of Clinical Oncology. 2013; 9:12-28.

Manam RR, Teisan S, White DJ, Nicholson B, Grodberg J, Neuteboom ST, Lam KS, Mosca DA, Llyod GK, Potts BC. Lajollamycin, a Nitro-tetraene Spiro-â-lactone-γ-lactam Antibiotic from the Marine Actinomycete Streptomyces nodosus. Journal of Natural Products. 2005; 68(2):240-243.

Michalak I, Chojnacka K. Algae as production systems of bioactive compounds. Engineering in Life Sciences. 2015; 15:160-176.

Michiels J, Skrivanova E, Missotten J, Ovyn A, Mrazek J, Smet DS, Dierick N. Intact brown seaweed (Ascophyllum nodosum) in diets of weaned piglets: effects on performance, gut bacteria and morphology and plasma oxidative status. Journal of Animal Physiology and Animal Nutrition. 2011; 1-11.

Molinski TF, Dalisay DS, Lievens SL, Sludes JP. Drug development from marine natural products. Nature Reviews Drug Discovery. 2009; 8(1):69-85.

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. Autodock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry. 2009; 30:2785-2791.

Munger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, Grace M, Huh K. Mechanisms of human papillomavirusinduced oncogenesis. Journal of Virology. 2004; 78:11451-11460.

Murakami N, Sugimoto M, Morita M, Kobayashi M. Total Synthesis of Agosterol A: An MDR-Modulator from a Marine Sponge. Chemistry- A European Journal. 2001; 7(12):2663-2670.

O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. Journal of cheminformatics. 2011; 3:33.

Oliveira ALLD, Felicio RD, Debonsi HM. Marine natural products: chemical and biological potential of seaweeds and their endophytic fungi. Revista Brasileira de Farmacognosia. 2012; 22(4):906-920.

Pal A, Kamthania MC, Kumar A. Bioactive Compounds and Properties of Seaweeds—A Review. Open Access Library Journal. 2014; 1:e752.

Panayotova V, Stancheva M, Dobreva D. Alpha-tocopherol and ergocalciferol contents of some macroalgae from Bulgarian Black Sea coast. Ovidius University Annals of Chemistry. 2013; 24(1):13-16.

Patel D, Huang SM, Baglia LA, McCance DJ. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP

and p300. The EMBO Journal. 1999; 18(18):5061-5072.

Perdicaris S, Vlachogianni T, Valavanidis A. Bioactive Natural Substances from Marine Sponges: New Developments and Prospects for Future Pharmaceuticals. Natural Products Chemistry and Research. 2013; 1(3):114

Pereira H, Barreira L, Figueiredo F, Custodio L, Duarte C-V, Polo C, Resek E, Engelen A, Varela J. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications. Marine Drugs. 2012; 10:1920-1935.

Plaza M, Santoyo S, Jaime L, Reina G-BG, Herrero M, Senorans, FJ, Ibanez E. Screening for bioactive compounds from algae. Journal of Pharmaceutical and Biomedical Analysis. 2010; 51:450-455.

Ponder J, Yoo BH, Abraham AD, Li Q, Ashley AK, Amerin CL, Zhou Q, Reid BG, Reigan P, Hromas R, Nickoloff JA, LaBarbera DV. Neoamphimedine Circumvents Metnase-Enhanced DNA Topoisomerase IIα Activity Through ATP-Competitive Inhibition. Mar. Drugs. 2011; 9:2397-2408.

Saeidnia S, Manayi A, Gohari AR, Abdollahi M. The Story of Beta-sitosterol- A Review. European Journal of Medicinal Plants. 2014; 4(5):590-609.

Sajilata MG, Singhal RS, Kamat MY. The Carotenoid Pigment Zeaxanthin—A Review. Comprehensive Reviews in Food Science and Food Safety. 2008; 7:29-49.

Schuler LD, Daura X, Gunsteren WFV. An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. Journal of Computational Chemistry. 2001; 22:1205-1218.

Schüttelkopf AW, Aalten DMV. PRODRG: A tool for high-throughput Crystallography of protein-ligand complexes. Acta Crystallographica. 2004; D60:1355-1363.

Simmons TL, Andrianasolo E, McPhail K, Flatt P, Gerwick WH. Marine natural products as anticancer drugs. Molecular Cancer

Therapeutics. 2005; 4(2):333-342.

Sipkema D, Franssen MC, Osinga R, Tramper J, Wijffells RH. Marine sponges as pharmacy. Marine Biotechnology. 2005; 7:142-162.

Sundarrajan S, Kumari S, Lulu S, Arumugam M. Identification of Potent Hepatitis C Virus RdRp Inhibitors by Structure Based Drug Designing. BMR Bioinformatics & Cheminformatics. 2014; 1(1):1-14.

Thomas M, Pim D, Banks L. The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene. 1999; 18:7690-7700.

Tungteakkhun SS, Duerksen-Hughes PJ. Cellular binding partners of the human papillomavirus E6 protein. Archives of Virology. 2008; 153(3):397-408.

White EA, Kramer RE, Tan MJ, Hayes SD, Harper JW, Howley PM. Comprehensive Analysis of Host Cellular Interactions with Human Papillomavirus E6 Proteins Identifies New E6 Binding Partners and Reflects Viral Diversity. Journal of Virology. 2012; 86:13174-13186.

Yu M-H, Glazer AN, Spencer KG, West JA. Phycoerythrins of the Red Alga Calliithamnion- Variation in Phycoerythrobilin and Phycourobilin content. Plant Physiology. 1981; 68(2):482-488.

Rietz A, Petrov DP, Bartolowits M, DeSmet M, Davisson VJ, Androphy EJ. Molecular Probing of the HPV-16 E6 Protein Alpha Helix Binding Groove with Small Molecule Inhibitors. PLoS ONE. 2016; 11(2):1-20.

How to cite this article:

Dhamodharan P, Ponnusamy N, Odumpatta R, Lulu S, Arumugam M. Computational investigation of marine bioactive compounds against E6 oncoprotein of Human Papilloma Virus-HPV16. J App Pharm Sci, 2018; 8(04): 023-032.