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Andrographolide, a lacton diterpenoid, due to its many biological activities, was subjected to a semi-synthetic work by 
reacting andrographolide (a) with hydroxybenzaldehyde under microwave irradiation. This reaction led to three new 
andrographolide analogues, which are 3,19-2-hydroxybenzylidene andrographolide (b), 3,19-3-hydroxybenzylidene 
andrographolide (c), and 3,19-4-hydroxybenzylidene andrographolide (d), respectively. The yields were 85%, 86%, 
86% for compounds b, c, d respectively. These new compounds had already been studied previously by pharmacophore 
screening and molecular docking simulation, which revealed their affinity to HIV-1 protease. Furthermore, their 
inhibitory activity against HIV-1 protease was measured by in vitro fluorometric method at (Ex/Em) = 330/450 nm 
which resulted 18.14, 10.72, 9.93, 8.32 µM respectively for IC50 value. The increased activity of these compounds may 
reflect the binding of the hydroxybenzaldehyde moiety with the hydrophobic area of the HIV-1 protease.
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INTRODUCTION
HIV-1 protease inhibitors (PIs) have played a critical 

role in the success of highly active antiretroviral therapy 
for treatment of HIV-1 infected patients (Anderson et al., 
2009; Shen et al., 2008; Thompson et al., 2012). PIs have 
the highest intrinsic antiviral activity (Jilek et al., 2012) and 
the only antiretroviral drugs that have been successfully used 
in monotherapy (Perez-Valero and Arribas, 2011). PIs are 
known to act by preventing cleavage of viral polyproteins into 
functional subunits, thereby inhibiting maturation of the virus 
(Swanstrom and Wills, 1997). A recent study has suggested 
that in mediating their antiviral effects, PIs affect multiple 
distinct steps in the life-cycle of the virus including both entry 
and post-entry events explaining their remarkable potency in 
suppressing viral replication (Rabi et al., 2013).

Our previous in silico studies indicated that 
andrographolide (C20H30O5), an α-alkylidene γ-butyrolactone, two 
olefin bonds at C-8 and C-12 and three hydroxyls at C-3, C-19 
and C-14 (Nanduri et al., 2004), which has been analyzed by 
X-ray crystallographic method and defined as 3-[2-[decahydro-
6-hydroxy-5-(hydroxymethyl)-5,8a-dimethyl-2-methylene-1-
naphthalenyl]ethylidine]dihydro-4-hydroxy-2(3H)-furanone 
(Smith et al., 1982), interacts with two important aspartate residues 
(Asp25 and Asp29) in the binding pocket of HIV-1 protease, 
similarly as its hydroxybenzylidene derivatives. Therefore, 
andrographolide and its derivatives potential to be developed as 
PIs for anti-HIV drugs (Megantara et al., 2017). 

In order to determine the importance of the hydroxyl 
groups located at C-14 and C-19 combined with the presence of 
oxygen atom in the lactone ring of andrographolide for aspartic 
protease inhibitors activity, we modified this particular ligand by 
protecting its pharmacophores and adding hydroxyl-benzaldehyde 
moiety to fill in the hydrophobic empty space on the receptor’s 
active site. Therefore, herein we report the semi-synthesis of 
andrographolide analogues by modifying a synthesis method 
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that has been successfully carried out by Hadi Poerwono et al. 
(Poerwono et al., 2007) and furthermore an in vitro study to 
determine inhibitory activity against HIV-1 protease enzyme. 
Microwave-assisted organic synthesis was chosen to obtain a 
variety of advantages, including shorter reaction time, better 
yield together with simplicity in processing and handling (Razzaq 
and Kappe, 2008), and reduce hazardous intermediate products. 
This method complies on green chemistry, which is also called 
sustainable chemistry. The term green chemistry is defined as 
“the invention, design and application of chemical products 
and processes to reduce or to eliminate the use and generation 
of hazardous substances by keeping carbon footprint as low as 
possible. Microwave assisted organic synthesis has emerged as a 
new “lead” in organic synthesis and has provided the excellent 
momentum for many chemists to switch to microwave assisted 
chemistry (Gangrade et al., 2015). 

MATERIALS AND METHODS

Chemicals
The chemicals were Andrographolide [Sigma-Aldrich], 

2-Hydroxybenzaldehyde [Merck], 3-Hydroxybenzaldehyde 
[Sigma-Aldrich], 4-Hydroxybenzaldehyde [Merck], Pyridinium 
p-toluenesulfonate (PPTS) [Sigma-Aldrich], Triethylamine [Sigma-
Aldrich], Sodium sulfate anhydrous [Sigma-Aldrich], Benzene 
[Merck], Dimethyl sulfoxide (DMSO) [Merck], Chloroform [Merck], 
Methanol [Merck], Ethyl acetate [Merck], n-Hexane [Merck], 
Lopinavir/Ritonavir 200 mg/50 mg (Aluvia®) as drug standard, and 
HIV-1 protease inhibitor screening kit [Bio Vision, USA].

Instruments
The synthesis reactions were carried out in an ace 

pressure tube using a Microwave synthesis reactor [Sineo MAS-
II]. Melting point was determined on a Fisher-Johns apparatus 
(Fisher Scientific, Waltham, MA, USA) (uncorr). TLC Analysis 
was carried out using GF254 (Merck Millipore, Darmstadt, 
Germany) under UV Lamp 254/366 nm (CamagTM, Camag 
Chemie-Erzeugnisse & Adsorptionstechnik AG, Muttenz, 
Switzerland). FTIR spectra were recorded in KBr powder on a 
Shimadzu® FT-IR Prestige-21 spectrophotometer (Shimadzu 
Corporation, Kyoto, Japan). Mass spectral data were recorded on 
MS Mariner BiospectrometryTM (Applied Biosystems, Foster 

City, CA, USA). 1H and 13C-NMR spectral data were recorded on 
an Agilent® (Agilent Technology, Santa Clara, CA, USA) at 500 
MHz and 125 MHz, respectively. Instruments used for in vitro 
assay were fluorometer microplate readers (Varioskan Flash-
Thermo Fisher scientific), black 96-well microtiter plate (Thermo 
Fisher scientific), plate shaker-thermostat (Biosan), vortex mixer 
(Julabo Paramix 3), and sonicator (FALC).

Synthesis of hydroxybenzylidene-andrographolide 
derivatives

Andrographolide (0.1 g, 0.28 mmol) was reacted with either 
2-hydroxybenzaldehyde (0.3 g, 2.83 mmol) or 3-hydroxybenzaldehyde 
(0.3 g, 2.83 mmol) or 4-hydroxybenzaldehyde (0.3 g, 2.83 mmol) 
in an ace-pressure tube using a Microwave synthesis reactor [Sineo 
MAS-II] (300W). Each of the mixture was then added by stirring with 
pyridinium p-toluenesulfonate (20 mg) in benzene-dimethyl sulfoxide 
(4.5:0.5) for 3h. After the reaction was completed (checked by thin 
layer chromatography), the contents were treated with excess of 
triethylamine to quench the remaining catalyst. The reaction mixture 
was diluted with benzene and washed with water (3 times, 3 × 10 mL). 
The organic layer was separated, dried over sodium sulfate anhydrous, 
and concentrated by vacuum distillation. The product was purified by 
column chromatography using chloroform–methanol (20:1) as eluent. 

Inhibitory activity in vitro study against HIV-1 protease 
enzyme

The solutions (substrate, standard, enzyme control, 
inhibitor control, andrographolide and its hydroxybenzylidene 
derivatives) were prepared according to the manual instruction of 
HIV-1 protease inhibitor screening kit (Bio Vision, USA). Aluvia® 
solution was prepared by dissolving the powder of Aluvia® tablet 
in methanol, by considering both ritonavir and lopinavir are freely 
soluble in that particular solvent (PDR, 2001; WHO, 2009). The 
fluorescence of each solution (substrate, standard, enzyme control, 
inhibitor control, andrographolide and its hydroxybenzylidene 
derivatives) was measured at 330/450 nm in a kinetic mode for 
1-3 hour at 37°C. Each measurement was replicated three times.

RESULTS AND DISCUSSION
In this work, we have successfully synthesized three 

new hydroxybenzylidene-andrographolide analogues under 
microwave irradiation as shown in Figure 1.

Fig. 1: The synthesis of 3,19-2-hydroxybenzylidene andrographolide (b), 3,19-3-hydroxybenzylidene andrographolide (c), and 3,19-4-hydroxybenzylidene 
andrographolide (d).
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Compound b was obtained as a white solid. Yield: 85%, 
m.p.: 140–142°C. 1H-NMR (500 MHz, MeOH-d4): δ (ppm) 0.75 
(s, 3H, CH3), 1.22 (s, 3H, CH3), 1.30 (t, 2H, CH2, J = 13 Hz), 
1,39 (dt, 2H, CH2, J = 8.7 Hz, J = 4.1 Hz), 1.80 (dt, 2H, CH2, J 
= 6.1 Hz, J = 3.5 Hz), 1.90 (t, 1H, CH, J = 7.7 Hz), 2.03 (dd, 2H, 
CH2, J = 12.8 Hz, J = 6.0 Hz), 2.59 (t, 2H, CH2, J = 6.6 Hz), 2.62 
(t, 1H, CH, J = 3.7 Hz), 4.15 (dt, 2H, CH2, J = 8.2 Hz, J = 2.0 Hz), 
4.47 (dd, 1H, CH, J = 6.1 Hz, J = 4.1 Hz), 4.67 (s, 2H, CH2), 4.89 
(s, 2H, CH2), 5.98 (s, 1H, CH), 6.8 (d, 1H, Ar-H, J = 7.5 Hz), 6.85 

(t, 1H, Ar-H, J = 7.5 Hz), 7.25 (t, 1H, Ar-H, J = 7.5 Hz), 7.41 (d, 
1H, Ar-H, J = 7.5 Hz), 8.95 (s, 1H, Ar-OH). 13C-NMR (125 MHz, 
MeOH-d4): δ (ppm) 15.5, 23.4, 25.2, 25.7, 29.0, 38.1, 39.0, 40.0, 
43.7, 56.3, 57.4, 65.0, 66.7, 76.2, 80.9, 102.1, 209.2, 115.0, 120.0, 
126.8, 129.8, 137.4, 148.8, 149.4, 154.7, 172.6. MS (EI): [M]+ m/z 
= 454.24(33), 436.26(100), 420.25(21), 284.19(4), 256.19(15). 
FT-IR 3396, 70 (alcohol O-H); 2927,03 (C-C-H); 1726,32 (Ester 
C=O); 1674,24 (Aldehyde and ketone C=O); 1647,24 (Aromatic 
C=C); 1296,19 (Sp2 C-O).

Fig. 2: Relative inhibition curve of the compounds against HIV-1 protease.

Compound c was obtained as a white solid. Yield: 86%, 
m.p.: 167–170°C. 1H-NMR (500 MHz, MeOH-d4): δ (ppm) 0.73 
(s, 3H, CH3), 1.20 (s, 3H, CH3), 1.29 (t, 2H, CH2, J = 13 Hz), 
1,35 (dt, 2H, CH2, J = 8.7 Hz, J = 4.1 Hz), 1.77 (dt, 2H, CH2, J 
= 6.1 Hz, J = 3.5 Hz), 1.88 (t, 1H, CH, J = 7.7 Hz), 2.02 (dd, 2H, 
CH2, J = 12.8 Hz, J = 6.0 Hz), 2.55 (t, 2H, CH2, J = 6.6 Hz), 2.60 
(t, 1H, CH, J = 3.7 Hz), 4.11 (dt, 2H, CH2, J = 8.2 Hz, J = 2.0 Hz), 
4.42 (dd, 1H, CH, J = 6.1 Hz, J = 4.1 Hz), 4.63 (s, 2H, CH2), 4.85 

(s, 2H, CH2), 5.95 (s, 1H, CH), 6.7 (d, 1H, Ar-H, J = 7.5 Hz), 6.85 
(t, 1H, Ar-H, J = 7.5 Hz), 7.25 (d, 1H, Ar-H, J = 7.5 Hz), 7.5 (s, 
1H, Ar-H), 8.8 (s, 1H, Ar-OH). 13C-NMR (125 MHz, MeOH-d4): 
δ (ppm) 15.2, 23.0, 24.9, 25.5, 28.9, 37.8, 38.7, 39.5, 40.6, 56.0, 
57.1, 64.6, 66.2, 76.1, 79.9, 101.7, 208.5, 114.2, 118.6, 126.5, 
129.4, 137.2, 147.1, 148.4, 153.3, 170.5. MS (EI): [M]+ m/z = 
454.20(35), 436.26(100), 420.24(20), 284.18(5), 256.15(17). 
FT-IR 3396,70 (alcohol O-H); 2927,99 (C-C-H); 1727,26 (Ester 
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C=O); 1673,28 (Aldehyde and ketone C=O); 1580,69 (Aromatic 
C=C); 1220,96 (Sp2 C-O).

Compound d was obtained as a white solid. Yield: 86%, 
m.p.: 192–194°C. 1H-NMR (500 MHz, MeOH-d4): δ (ppm) 0.70 
(s, 3H, CH3), 1.21 (s, 3H, CH3), 1.32 (t, 2H, CH2, J = 13 Hz), 
1,31 (dt, 2H, CH2, J = 8.7 Hz, J = 4.1 Hz), 1.68 (dt, 2H, CH2, J 
= 6.1 Hz, J = 3.5 Hz), 1.83 (t, 1H, CH, J = 7.7 Hz), 2.11 (dd, 2H, 
CH2, J = 12.8 Hz, J = 6.0 Hz), 2.51 (t, 2H, CH2, J = 6.6 Hz), 2.48 
(t, 1H, CH, J = 3.7 Hz), 4.10 (dt, 2H, CH2, J = 8.2 Hz, J = 2.0 Hz), 
4.37 (dd, 1H, CH, J = 6.1 Hz, J = 4.1 Hz), 4.56 (s, 2H, CH2), 4.78 
(s, 2H, CH2), 5.92 (s, 1H, CH), 6.7 (d, 1H, Ar-H, J = 7.5 Hz), 6.85 
(d, 1H, Ar-H, J = 7.5 Hz), 7.25 (d, 1H, Ar-H, J = 7.5 Hz), 7.35 
(d, 1H, Ar-H, J = 7.5 Hz), 8.62 (s, Ar-OH). 13C-NMR (125 MHz, 
MeOH-d4): δ (ppm) 15.0, 22.2, 24.2, 25.5, 28.2, 38.0, 37.7, 38.1, 
42.7, 55.5, 56.1, 62.9, 65.4, 74.8, 80.2, 101.2, 208.1, 114.0, 118.2, 
124.5, 128.9, 136.2, 146.1, 147.4, 152.5, 170.2. MS (EI): [M]+ m/z 
= 454.20(36), 436.26(100), 420.27(22), 284.20(6), 256.21(19). 
FT-IR 3217,32 (alcohol O-H); 2927,99 (C-C-H); 1726,32 (Ester 
C=O); 1674,24 (Aldehyde and ketone C=O); 1598,05 (Aromatic 
C=C); 1218,07 (Sp2 C-O).

Inhibitory activity against HIV-1 protease was performed 
by measuring the amount of product formed in the reaction 
catalyzed by the HIV-1 protease expressed by IC50 value which 
was calculated from relative inhibition curve (Figure 2).

Most current HIV PIs were designed to mimic the 
substrate transition state. The hydroxyl group, particularly 
-CH-COH-CH2- of the inhibitor, interacts with the carboxyl 
group of the protease active site residues, Asp 25 and Asp 25′, by 
hydrogen bonds. The inhibitor-contacting residues of HIV protease 
are relatively conserved, including Gly 27, Asp 29, Asp 30, and Gly 
48, but the accumulation of drug-resistance mutations alters the 
structure of HIV protease and causes treatment failure (Lv et al., 
2015). Our previous in silico studies indicated that andrographolide 
interacted with two important aspartate residues (Asp25 and 

Asp29) in the binding pocket of HIV-1 protease, similarly as its 
hydroxybenzylidene derivatives (Megantara et al., 2017). 

Inhibitory activity in-vitro against HIV-1 protease 
enzyme was used pepstatin as inhibitor standard due to its 
powerful inhibitory activity for proteases (Marciniszyn et al., 
1976). Besides Pepstatin, we also used Aluvia® tablet, contains 
lopinavir and ritonavir as inhibitor standard. Lopinavir is a novel 
protease inhibitor (PI) developed from ritonavir. Coadministration 
with low-dose ritonavir had significantly improved the 
pharmacokinetic properties and furthermore increased the activity 
of lopinavir against HIV-1 protease. Coformulated lopinavir/
ritonavir should be regarded as a first-line option when including 
a PI in the management of HIV-1 infection (Cvetkovic and Goa, 
2003). When lopinavir and ritonavir are given simultaneously, 
ritonavir will inhibit CYP3A4 isoenzyme in the liver that increases 
the concentration of lopinavir (Kumar et al., 1999). Furthermore, 
cell-to-cell spread of HIV-1 was potently blocked in the presence 
of both lopinavir and darunavir at doses corresponding to the 
maximum plasma concentrations (Cmax) (14 μM LPV; 12 μM 
DRV) achieved in vivo (Back et al., 2008; Lafeuillade et al., 2002).

Result showed that its IC50 was 1.61 ± 0.21 μM, which 
was close to other report: 2.0 μM (Sarubbi et al., 1993). Aluvia® 
tablet, contains lopinavir and ritonavir, was used as drug standard 
and its IC50 value was 1.12 ± 0.11 μM. The inhibitory activity of 
Aluvia® against HIV protease is stronger than pepstatin. The IC50 
of andrographolide, 3,19-2 hydroxybenzylidene andrographolide, 
3,19-3 hydroxybenzylidene andrographolide, and 3,19-4 
hydroxybenzylidene andrographolide were 18.14 ± 5.95 µM, 10.72 
± 1.39 µM, 9.93 ± 1.24 µM, and 8.32 ± 1.07µM, respectively. It 
was noticeable that the IC50 of andrographolide and its derivatives 
was higher than the standards (Figure 3). All hydroxybenzylidene-
andrographolide analogues showed better inhibition than its 
parent compound, but derivate-3 (3,19-4 hydroxybenzylidene 
andrographolide) is the strongest in inhibiting the enzyme.

 

Fig. 3: IC50 histogram of the compounds 3,19-2-hydroxybenzylidene andrographolide (b), 3,19-3-hydroxybenzylidene andrographolide (c), and 3,19-4-hydroxybenzylidene 
andrographolide (d).
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CONCLUSION
The microwave-assisted synthesis had resulted three 

new hydroxybenzylidene-andrographolides with sufficient 
yields (85-86%). Andrographolide and its hydroxybenzylidene 
derivatives indicated inhibitory activity against HIV-1 protease, 
which proves that the replacement of hydroxyl groups at C-3 and 
C-19 with hydroxybenzaldehyde is responsible for increasing the 
activity. The increased activity of these compounds may reflect the 
binding of the hydroxybenzaldehyde moiety with the hydrophobic 
area of the HIV-1 protease. The strongest activity was showed by 
3,19-4 hydroxybenzylidene andrographolide. 
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