
 

© 2017 Mervat H. El-Hamamsy. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-
ShareAlikeUnported License (http://creativecommons.org/licenses/by-nc-sa/3.0/). 

 
 

 

Journal of Applied Pharmaceutical Science Vol. 7 (12), pp. 014-027, December, 2017 

Available online at http://www.japsonline.com 

DOI: 10.7324/JAPS.2017.71203 

ISSN 2231-3354    

 

Accessing the Anti-Proliferating Activity of Tankyrase-2 Inhibitors 

via 2D, 3D-QSAR and Molecular Docking: Assessment of Structure 

Activity Relationships 

 
Mervat H. El-Hamamsy 
 

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, El Giesh street, 31527, Tanta, Egypt. 
 
 
 
 

 
 

ARTICLE INFO 
 
 

 

ABSTRACT 

 

Article history: 

Received on: 11/07/2017 

Accepted on: 12/09/2017 

Available online: 30/12/2017 
 

 

 

 

 

 

 

 

 

 

 

 

Tankyrases (TNKSs) have been implicated in many biological processes and have been proposed as a drug 

target for cancer therapy. The human genome encodes two homologous isoforms, TNKS-1 and TNKS-2. This 

study reported the first theoretical study of three-dimensional, two-dimensional quantitative structure activity 

relationships and a docking analysis of a series of 2-arylquinazolin-4-one, 3-arylisoquinolin-1-one, 

arylnaphthyridinone and aryltetrahydronaphthyridinone derivatives with remarkable TNKS-2 inhibiting 

activities reported recently in literatures. The predictive ability of the QSAR models was assessed using internal 

and external validation. 3D-QSAR model showed that the substituents R1 and R2 in studied compounds are key 

modulators to enhance the TNKS-2 inhibition. The 2D-QSAR model, was based mainly on three 2D descriptors 

and nine 3D descriptors. This suggested that TNKS-2 inhibition is predominantly controlled by steric properties 

of the inhibitors. Docking study was carried out by using ligands docking on the active site of three different 

crystal structures of TNKS-2 to understand the binding mode of these compounds as TNKS-2 inhibitors. We 

discussed the structural requirements for selective and potent TNKS-2 inhibitors. Four potent inhibitors were 

designed to be synthesized in the future. 
 

  

Key words:  

Tankyrase, QSAR, Docking, 

2-arylquinazolin-4-one, 3-

arylisoquinolin-1-one, 

arylnaphthyridinone. 

  

INTRODUCTION 
 

Tankyrase (TNKS) was first identified in 1998 and 

found to interact with telomeric repeat binding factor (TRF1), a 

protein that binds to and protects the telomeric DNA. The human 

genome encodes two homologous isoforms, TNKS-1 and TNKS-

2 (Karlberg et al., 2010; Lehtiö et al., 2008). TNKSs are PARP 

(poly ADP-ribose polymerase) enzymes that produce poly(ADP-

ribose) (PAR) to regulate multiple distinct cellular processes, 

including telomereelongation (De Rycker and Price, 2004; Riccio 

et al., 2016), control of the mitotic checkpoint and mediation of 

insulin-stimulated glucose uptake (Chi and Lodish, 2000). 

TNKSs serve as an associated protein in the Wnt signal 

transduction pathway (Martino-Echarri et al., 2016). As soon as 

TNKSs are positive telomerase regulators, inhibiting them 

reduces telomerase activity,  enhances  telomere  shortening,  and 
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may have an overall inhibitory effect on cancer (Lehtiö et al., 

2008; Martino-Echarri et al., 2016). XAV939 was the first high 

potency TNKS inhibitory molecule identified (Haikarainen1 et al., 

2016; Karlberg et al., 2010). TNKS-1 and TNKS-2 share 82% 

sequence identity and similar secondary structure (Barkauskaite et 

al., 2015; Haikarainen1 et al., 2016). TNKS-2 exists as dimmer 

with two identical subunits. Each subunit is comprised of four 

distinct domains: catalytic, ankyrin-repeat, sterile alpha motif, and 

N-terminal domains. The catalytic domain of TNKSs consists of 

two anti-parallel β-sheets surrounded by four α-helices 

(Haikarainen1 et al., 2016; Lehtiö et al., 2008). The catalytic 

domain of TNKSs consists of a donor site and an acceptor site. The 

donor site can be divided into two parts, the nicotinamide and 

adenosine subsites. The catalytic domain includes three central 

amino acids (the conserved HYX triad) that are situated near the 

nicotinamide subsite. These residues are His1031, Tyr1060, 

Glu1138 for TNKS-2 (Haikarainen1 et al., 2016; Karlberg et al., 

2010).  
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TNKSs have been implicated in many biological 

processes and has been proposed as a drug target for cancer 

therapy. Altered levels of TNKSs expression have been reported in 

lung cancer (Wang et al., 2016), breast cancer (Gelmini et al., 

2004), gastric cancer (Gao et al., 2011), bladder cancer (Gelmini et 

al., 2007), brain tumors (La Torre et al., 2013), colon carcinoma 

(Waaler et al., 2012) and pancreatic adenocarcinoma (Lehtiö et al., 

2013). TNKSs inhibitors were classified into three main groups 

(Liscio et al., 2014);i) compounds that bind to nicotinamide 

subside and working as nicotinamide isosteres (Wahlberg et al., 

2012) such as lactam-based pyrimidin-4-one (XAV939) (Huang et 

al., 2009) and non-lactam inhibitors (Shultz et al., 2013), ii) 

compounds that bind to adjacent induced pocket of the enzymes, 

adenoside sub-site, (Gunaydin and Huang, 2012; Bregman et al., 

2013) and iii) dual binder compounds that simultaneously occupy 

both sites aforementioned (Hua et al., 2013). 

Quantitative structure activity relationships (QSAR) are a 

mathematical model of statistical correlation between the variation 

in chemical structure (represented by molecular descriptors) and 

biological activity profile of a series of compounds. Molecular 

descriptors are either two-dimensional (2D) or three-dimensional 

(3D) (Todeschini et al., 2009). 2D and 3D-QSAR models help to 

understand the non-bonding interaction characteristics between the 

drug molecule and active site of the target site (Li et al., 2013). On 

the other hand, molecular docking studies provide the possible 

binding conformations of the ligands in a receptor. Combined with 

QSAR, they can provide information for designing new potential 

drugs (Jain et al., 2012; Villalobos et al., 2013). 

In this computer-aided drug design study, a series of 2-

arylquinazolin-4-one (A) (Nathubhai et al., 2016), 3-

arylisoquinolin-1-one(B)(Paine et al., 2015), arylnaphthyridinone 

(C) and aryltetrahydronaphthyridinone (D)derivatives (Kumpan           

et al., 2015)with remarkable TNKS-2 inhibiting activities  reported 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

recently in literatures together with XAV939 (E) (Figure 1) were 

chosen to perform the first combined 2D, 3D-QSAR and docking 

studies. The aim of this work is to establish the first reliable 2D 

and3D-QSAR models to assess the structure activity relationships 

and to provide a guideline for designing novel anticancer TNKS-2 

inhibiting drugs. 

 

MATERIALS AND METHODS 

 

Dataset 

The dataset of 62 compounds, including XAV939 was 

retrieved from literatures (Kumpan et al., 2015; Nathubhai et al., 

2016; Paine et al., 2015). The selected compounds for the data set 

shared the same assay procedure, with significant variations in 

their structures and potency profiles. They had IC50 values varying 

from 1.1 to 6200 nM (Kumpan et al., 2015; Nathubhai et al., 2016; 

Paine et al., 2015). These were then converted into their negative 

logarithmic units, pIC50, values [pIC50= -Log IC50 (M)].3D 

structures were drawn and geometry optimized using Marvin 

Sketch V5.11.5 (ChemAxon, 2017). 

 

3D-QSAR, CoMFA 

The optimized structures were imported to SYBYL-X 2.1 

(Sybyl, 2017) in *Mol2 file format. All compounds were 

minimized under the Tripos standard (TS) force field (Clark et al., 

1989) with Gasteiger-Marsili atomic partial charges (Gasteiger and 

Marsili, 1980). Minimizations were done using the Powell method, 

in which calculations were set to terminate at an energy gradient 

value of 0.01 kcal/mol. A genetic algorithm with linear assignment 

of hypermolecular alignment of datasets (GALAHAD
®
) is 

regarded as a superior tool for molecular alignment compared with 

classical common structural alignment (Zhao et al., 2011). 

 
Fig. 1: General structures of 2-arylquinazolin-4-one (A), 3-arylisoquinolin-1-one derivatives (B) arylnaphthyridinone (C), aryltetrahydronaphthyridinone (D) 

and XAV939 (E) used in this modelling study. 
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The optimized structures were aligned using the “flexible 

alignment of ligands to each other” option in GALAHAD and set 

template molecule area to No template. The other parameters for 

calculation were set to default values. The chemical structures and 

biological activities of our dataset are shown in Table 1. For the 

development of 3D-QSAR model the dataset (62 compounds) was 

divided into a training set (44 compounds) to generate the model 

and a test set (18compounds) to evaluate the predictive ability of 

the resulting model. 

 

2D-QSAR 

Data preparation and descriptor selection 

The 3D-geometry of the compounds were built and 

energy minimized with Marvin 5.11.5software (ChemAxon 2017), 

and then further optimized by Molecular Operating Environment 

software (MOE version 2014.0901) (MOE, 2017). 2D and internal 

3D descriptors for which alignment is not required were calculated 

for the data set using QuaSAR module of MOE software (MOE, 

2017; Zhao et al., 2011). 2D descriptors only use the atoms and 

connection information of the molecule for the calculation while 

3D coordinates and individual conformations are not considered. 

Internal 3D descriptors use 3D coordinate information about each 

molecule; however, they are invariant to rotations and translations 

of the conformation. To select the predominant descriptors 

affecting the activity of our data set, the descriptors (150 2D + 90 

3D-descriptors) were calculated for each molecule in the series and 

were reduced by eliminating out the descriptors with constant and 

near-constant values. Seven QuaSAR models were generated for 

each set of 2D-descreptors. Four QuasAr models were generated 

for each set of i3D-descreptors. Seven compounds with Z-score 

more than 2.5 were in the outlier and were eliminated from the 

data set. To reduce the number of descriptors considered for the 

study, both descriptors-contingency (a statistical application 

designed to assist in the selection of descriptors for QSAR) and 

correlation matrix were performed to limit the number  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of descriptors. A final set of three 2D-descriptors and nine i3D- 

descriptors were identified to be significantly affecting pIC50 and 

was used in the construction of our QSAR model (Lakhlili, et al., 

2016). The QuaSAR- module in MOE was used to generate the 

PLS QSAR model (MOE, 2017). Finally, the report of calculation 

was obtained and the model was saved as (*.FIT) file and was 

used to predict the activities of the test data set for external 

validation. 

 

Model validation 

Each obtained model (2D-QuaSAR and CoMFA models) 

was subjected to internal and external validation using the reported 

validation parameters of QSAR models (Gramatica, 2007; Roy, 

2007). These parameters include root mean square error (RMSE), 

cross-validated RMSE, squared correlation coefficient(R
2
) and 

cross-validated R
2
 (Q

2
 in case of CoMFA) for the training set in 

addition to R
2
 value of the test set. 

 

Molecular docking 

Molecular docking study was performed on selected 

inhibitors using two different softwares, FlexX module in LeadIT 

2.2.0package (BioSolveIT, 2017) and MOE 2014.0901(MOE, 

2017). The ligands were docked within the active site of 3 

different crystal structures of TNK-2 available in the PDB (PDB 

code: 3U9H) (Protein data bank, 2017), (PDB code: 4UX4) 

(Protein data bank, 2017), and (PDB code: 3KR8) (Protein data 

bank, 2017).  

The native ligand was removed, and the nicotinamide 

binding site was defined as all atoms within 8˚A of the 

crystallographic ligand. Hydrogens were added to amino acid 

residues and all crystallographic water molecules were removed. 

Docking with flexible ligands and rigid protein was performed 

using standard parameters except that the number of runs was 20. 

The scoring function is used for ranking the docked ligands into 

the active site (Tables 1a, b & c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1a: Experimental and predicted biological activities and residual values obtained by the CoMFA and 2D-QuaSAR models from training set and (test) set of 

compounds 1-8. 

Dock score* 

(clash) 

Resid 

Value 

QuaS- AR 

Pred. pIC50 

QuaS- AR 

Resid 

Value 

CoM- FA 

Pred. 

pIC50 

CoM- FA 

pIC50 

 

 

IC50 

nM 
R1 X,V, Y NC 

General chemical 

structure 

-33.34(3.00) -0.26 5.56 -0.22 outlier 5.30 5×103 H X=N 1 

 

- -0.16 6.04 0.25 5.64 5.89 1.3×103 H V=N 2 

- - outlier -0.20 outlier 5.21 6.2×103 CH3 Y=N 3 

-31.59(4.12) - outlier 0.00 7.01 7.01 97 H  4 

 

-32.92(3.72) -0.90 9.86 (test) -0.37 9.33 (test) 8.96 1.1 OCH3  5 

- -0.10 8.92 (test) 0.08 8.74(test) 8.82 1.5 CF3  6 

-32.49(4.19) -0.17 7.85 -0.13 7.81 7.68 21 Cl  7 

-32.51(4.18) 0.12 8.09 0.31 7.90 8.21 6.1 Br  8 

NC: number of compounds. 

test set compounds are indicated for each model under the predicted values for each between practices. 

*docking scores and (clashes) of some compounds docked on crystal structure 3KR8 using LeadIt. 
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Table 1b: Experimental and predicted biological activities and residual values obtained by the CoMFA and 2D-QuaSAR models from training set and (test) set of 
compounds 9-49. 

Dock 

score* (clash) 

Resid 

Value 

QuaSAR 

Pred. 

pIC50 

QuaSAR 

Resid 

Value 

CoMFA 

Pred. 

pIC50 

CoMFA 

pIC50 IC50nM R2 R1 NC 
General chemical 

structure 

-33.87(2.70) 0.04 5.95(test) -0.29 6.28(test) 5.99 1029 OCH3 H 9  

 

 
 

 

 
 

 

 
 

 

 

 

 

- -0.44 7.22 -0.20 6.98 6.78 167 OCH3 CH3 10 

- -0.30 7.36 0.03 7.03 7.06 87 OCH3 CF3 11 
-33.18(1.84) -0.199 7.40 0.49 6.72 7.21 62 OCH3 Cl 12 

- -0.101 7.07 -0.13 7.10 6.97 106 OCH3 Br 13 

- -0.19 6.53(test) -0.07 6.41(test) 6.34 459 OCH3 F 14 
- 0.137 5.92 -0.14 6.20 6.06 863 OCH3 NO2 15 

-35.32(4.75) -0.27 6.23 -0.62 6.59 5.97 1076 OCH3 NH2 16 

-32.99(2.53) 0.55 6.33 -0.07 6.96 6.89 128 OCH3 OCH3 17 
-32.83(2.45) -0.62 6.28 -0.27 5.93 5.66 2200 H H 18 

- -0.008 6.28(test) 0.10 6.17(test) 6.27 540 H CH3 19 

-34.00(2.24) -0.37 7.52 0.24 6.64 6.88 133 H CF3 20 

-33.32(2.45) 0.44 6.83(test) 0.49 6.78(test) 7.27 54 H Cl 21 

- -0.22 7.21 0.11 6.88 6.99 101 H Br 22 

- 0.002 5.96(test) -0.18 6.14(test) 5.96 1102 H F 23 
- 0.496 6.09 -0.27 6.86 6.59 259 H NO2 24 

- 0.04 6.12(test) -0.45 6.61(test) 6.16 690 H NH2 25 

- -0.48 6.69 0.12 6.09 6.21 611 H OCH3 26 
-31.42(3.95) 0.25 6.19 0.60 6.12 6.72 189 H OH 27 

-36.46(2.10) 0.26 7.08 0.07 7.28 7.35 45 H CH2NH-Cbz 28 

-30.61(2.92) -0.25 6.99 0.29 6.45 6.74 180 OH H 29 
- -0.16 7.51 0.51 6.85(test) 7.36 44 OH CH3 30 

-31.72(3.17) 0.04 7.56 0.27 7.33(test) 7.60 25 OH CF3 31 

-31.07(2.93) 0.03 7.27 0.02 7.29 7.31 49 OH Cl 32 
-31.18(2.93) -0.03 7.85 0.41 7.41 7.82 15 OH Br 33 

- -0.30 6.88 -0.07 6.65 6.58 263 OH F 34 

- -0.27 6.99 -0.38 7.01 6.72 191 OH NO2 35 
-33.58(4.16) 0.26 6.39 -0.10 6.76 6.66 219 OH NH2 36 

- 0.13 6.94(test) -0.18 7.25(test) 7.07 86 OH OH 37 

- -0.25 7.62 0.05 7.33 7.38 42 CH3 H 38 
-35.21(4.19) 0.41 7.73 0.10 8.05 8.15 7 CH3 CH3 39 

-34.37(4.12) 0.11 7.88 -0.07 8.07 8.00 10 CH3 CF3 40 

-33.14(5.74)  outlier -0.68 8.16 7.48 33 CH3 Cl 41 
-33.49(3.80) 0.38 7.83 -0.06 8.28(test) 8.22 6 CH3 Br 42 

- 0.08 7.30 -0.15 7.55 7.40 40 CH3 F 43 

- 0.32 7.19 0.24 7.28 7.52 30 CH3 NO2 44 
-39.17(3.07) - outlier 1.04 7.48 8.52 3 CH3 NH2 45 

- 0.76 7.15 -0.12 8.04 7.92 12 CH3 OCH3 46 

-35.34(3.99) 0.67 7.54 0.24 7.98 8.22 6 CH3 OH 47 
-37.16(3.64) -0.30 7.43 -0.16 7.30 7.14 73 CH3 CH2NH-Cbz 48 

- -0.23 7.59 0.00 7.37 7.37 43 CH3 CH2N
+H3Br- 49 

NC: number of compound. 
test set compounds are indicated for each model under the predicted values for each between practices. 

*docking scores and (clashes) of some compounds docked on crystal structure 3KR8 using LeadIt. 

 

 

 

Table 1c: Experimental and predicted biological activities and residual values obtained by the CoMFA and 2D-QuaSAR models from training set and (test) set of 
compounds 50-62. 

Dock score* 

(clash) 

Resid 

Value 

QuaSAR 

Pred. 

pIC50 

QuaSAR 

Resid 

Value 

CoMFA 

Pred. 

pIC50 

CoMFA 
PIC50 IC50nM R2 R1 NC 

 

 
 

 

 

 

- 0.10 7.36 -0.36 7.83 7.47 34 NH2 4-MePh 50 

- 0.28 8.61(test) 0.24 8.65(test) 8.89 1.3 CH3 4-MePh 51 

- 0.02 8.02 -0.23 8.28(test) 8.05 9 CH3 4-F3CPh 52 
- 0.31 6.73(test) -0.30 7.34(test) 7.04 91 CH3 3-ClPh 53 

- - outlier -0.35 7.84(test) 7.49 32 CH3 4-ClPh 54 

-25.56(10.08) - outlier -0.15 6.23 6.08 836 CH3 2,6-Cl2Ph 55 
-39.56(4.01) -0.29 8.31 0.32 7.70 8.02 9.6 CH3 4-PhC≡CPh 56 

-34.26(3.18) 0.90 6.64(test) 0.44 7.10(test) 7.54 29 CH3 Pyridin-4-yl 57 

-29.40(2.61) -0.17 7.89 -0.07 7.79 7.72 19 CH3 Thiophen-3-yl 58 

-33.99(2.02) 0.47 7.94 0.55 7.87(test) 8.42 3.8 F 4-MePh 59 

- - outlier -0.29 8.58 8.29 5.1 OCH3 4-MePh 60 

- 0.35 7.36 0.66 7.06 7.72 19 CH3 Ph 61 
-30.88(3.40) -0.24 8.02 0.56 7.17 7.82 15  XAV939 62 

NC: number of compound. 

test set compounds are indicated for each model under the predicted values for each between practices. 
*docking scores and (clashes) of some compounds docked on crystal structure 3KR8 using LeadIt. 
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RESULTS AND DISCUSSION 

 

3D-QSAR CoMFA 

OptiSim Diversity Algorithm, which is one of 

dissimilarity-based algorithms in the Tripos module in SYBYL 

software, was used for selection of structurally diverse sets of 

compounds in our data set to ensure coverage of the largest 

possible expanse of chemical space in the search for bioactive 

molecules (Clark, 1997). For the development of CoMFA model, 

the complete set of these molecules (62 compounds) were divided 

into a training set (44 compounds) to generate the models and a 

test set (18 compounds) to evaluate the predictive ability of the 

resulting models. The general structural formulae of the studied 

compounds are shown in Tables 1a, b and c. 

A statistically significant 3D-QSAR model was obtained 

by using the CoMFA method in SYBYL X-2.1.1 to construct the 

model. In the CoMFA model, initial PLS analysis of the aligned 

training set was done using a default data filter of 2.0 kcal/mol and 

the Tripos standard field. After omitting two outliers, 

(compounds1 and 3), & using MOLPROP-AREA (1D-descriptor) 

as an additional independent variable in 3D-QSAR models, better 

internal validation parameters (R
2
, Q

2
and standard error) were 

obtained from a training set of 42 compounds as opposed to the 

model derived from 44 compound (Tables 1a,b & c). 

 

Validating the model 

Internal validation of the final CoMFA model showed a 

cross-validation coefficient (Q
2
) of 0.588 for eight components 

used. The non-cross-validated PLS analysis results in a 

conventional R
2
 of 0.889 and an estimated standard error of 0.189. 

Also, the steric field descriptors explain 77.80 % of the variance, 

the electrostatic descriptors explain 2.27% of the variance and the 

MOLPROP-AREA descriptors explain 19.93% of the variance. 

External validation (Gramatica, 2007; Tropsha, 2010) of the 

developed model is achieved by calculating the predicted 

biological activity for training and test sets using    CoMFA model. 

The calculated residual values revealed a satisfactory predictive 

ability of our developed model as shown in Tables 1 (a, b & c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Scatter correlation plots for experimental and predicted 

activities of ligands elicited significant linear correlation and 

moderate differences between the experimental and predicted 

values as shown in Figure 2 (a and b). 

Graphical interpretation of CoMFA model: To visualize 

the information contained in the 3D-QSAR model, maps for 

CoMFA contours was generated, which provided a major 

understanding of the biological activities of studied compounds. 

The steric and electrostatic CoMFA contour fields are shown in 

Figures 3 and 4. In the steric field CoMFA, the green contours 

represent regions where bulky groups enhance the biological 

activity, while bulky groups decrease activity in contact with 

yellow regions. Furthermore, in the electrostatic fields CoMFA, 

blue contours indicate regions where the positive charge is 

desirable (electron withdrawing group enhances the activity) and 

red contours indicate the regions where negative charge is 

desirable (electron donating group enhances the activity) 

(Villalobos et al., 2013; Li et al., 2013). The contour maps of our 

model included two green steric regions at R1 and R2 positions 

(Figure 1, A and B) and a yellow steric region at 2 and 6 position 

of the phenyl group (two ortho positions). The electrostatic map 

showed a predominant red contour which indicated that negatively 

charged substituent is desirable (electron donating group enhance 

activity). The molecular structure of compounds23 and 55have 

been displayed in the fields as shown in Figures 3 and 4. 

Compound (23) with ap-flourophenyl group (R1=F) 

showed low activity because the steric bulky atom is desirable 

(green contour) and electron donor is favored (red contour) at this 

para position. That is why analogues with R1=Br (compounds 8, 

22, 33, 42) and R1=OCH3 (compounds 5, 17, 46) are more active 

than corresponding isomers with R1=H (compounds 4, 9, 18, 29, 

38), R1=F (14, 23, 34, 34) and isomers with R1=Cl (compounds 7, 

21, 32, 41) because the steric contribution with desirable bulky 

group at this region (green contour) represent 77.80 % of the 

variance, while electrostatic contribution is only 2.27% and the 

MOLPROP-AREA descriptors explain 19.93% of the variance. 

Consequently, both bulky electron donors and acceptors enhance 

the activity as shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
A                                                                                              B 

Y =0.8887 X + 0.8348                                                               Y =0.908 X + 0.716 

 

Fig. 2: Correlation plot between predicted pIC50versus experimental pIC50for (a) the training set and (b) the test set using CoMFA model. 
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2,6-dichlorophenyl group in the compound (55) lowered 

the potency because steric bulk is undesirable (yellow contour) 

around the two ortho positions. On the other hand, electron donor 

is favored (red contour) at this position. At the isoquinolinonering 

where, R2 = methyl, short, bulky group electron donor is favored 

and increase the biological activity because this position 

surrounded by green (with yellow contour beneath it)and red 

contours. Since short electron donor is desirable in this region, it 

was observed that all compounds with R2 = CH3 (compounds, 38-

49), NH2(compound 50) or OH (compounds 29-37) showed high 

biological activity compared to analogues with R2 = H 

(compounds, 18-27) as well as R2= OCH3groups (compounds, 9-

17) as shown in figure 4. 

 

2D-QSAR 

For the development of 2D-QuaSAR model the data set 

of 55 compounds, after eliminating seven outlier compounds with 

z-score more than 2.5 (compounds 3, 4, 41, 45, 54, 55, 60), were 

divided into a training set (43 compounds) to generate the model 

and a test set (12 compounds) to evaluate the predictive ability of 

the resulting model. The test compounds were selected manually 

in order to consider the structural diversity and a wide range of 

anti-malarial activity. The in vitro TNKS-2 Inhibition 

Concentration [IC50 (nM)] values were converted                                    

to the logarithmic scale pIC50 and used  as  dependent  variables  in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2D-QSAR analysis as shown in Tables 1a, b & c. Twenty-five 

models were constructed. The best model was chosen based on its 

statistical validation parameters and represented by the following 

equation: 

 

pIC50 = 58.99146 + 0.55492 * AM1_IP – 8.56710 * FASA+ - 

0.41808 * FCASA+ +1.78262 * PM3_HOMO + 11.24403 * 

VAdjEq – 21.39089 * vsurf_CW1 + 3.73822 * vsurf_CW2 – 

0.14832 * vsurf_CW3 + 8.21106 * vsurf_CW5 – 7.91040 * 

vsurf_CW6 – 7.86719 * BCUT-SMR_1 + 6.67410 * 

BCUT_PEOE_2 

The involved molecular descriptors are: 

VAdjEq: Atom Counts and Bond Counts, 2D descriptor 

BCUT_PEOE_2 and BCUT_SMR_1: Adjacency and Distance 

Matrix,2D descriptors 

AM1_IP and PM3_HOMO: MOPAC, 3D descriptors 

vsurf_CW*:Surface Area, Volume and Shape, 3Ddescriptors 

FASA+ and FCASA+: Conformation Dependent Charge,3D 

descriptors 

The developed 2D model was based mainly on three 2D 

descriptors and nine 3D descriptors. This suggested that TNKS-2 

inhibition is predominantly controlled by steric properties of the 

inhibitors, which is also supported by our developed CoMFA 

model. The vsurf_CW* descriptors depend on the structure 

connectivity and conformation. These descriptors have been 

 
 

 
Fig. 3: Steric contour map (left side), electrostatic contour map (middle)  

and overlay of contour maps (right side) of CoMFA model using compound (23) as a model. 

 
 

 
Fig. 4: Steric contour map (left side), electrostatic contour map (middle)  

and overlay of contour maps (right side) of CoMFA model using compound (55) as a model. 
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shown to be useful in pharmacokinetics property prediction 

(Cruciani et al., 2000). The conformation dependent charge 

descriptors, FASA+ and FCASA+, depend upon the stored partial 

charges of the molecules and their conformations. They measure 

the relative fractional water accessible surface area of all atoms 

with positive partial charge and a positive charge weighted surface 

area respectively (Stanton and Jurs, 1990), which revealed the 

importance of partial positive charge and presence of electron 

donors on activity as provided by our CoMFA model as well. 

 

Validating the model 

The internal validation parameters for the developed 

model was found to be accepted, where the R
2
 = 0.795, R

2
 (cv) = 

0.607, RMSE = 0.336, and RMSE (cv) = 0.483. The difference 

between the R
2
 and R

2
 (cv) value is 0.188 which indicates that the 

number of descriptors involved in the QSAR model is acceptable. 

The number of descriptors is not acceptable if the difference is 

more than 0.3 (Veerasamy et al., 2011). External validation                    

of the model is achieved by calculating the predicted pIC50 for the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

training and test sets compounds. The residual values were 

calculated and were less than 1 as shown in Tables (1 a, b and c) 

and Figures (5 and 6). The model’s predictive power was 

evaluated using R
2 
value of the test set and was the highest (0.795) 

compared to other models, as shown in the correlation plot of 

actual pIC50 versus predicted pIC50 for test set as shown in 

Figure 7. Moreover, the correlation plot between actual pIC50 and 

residual values for test set showed the lowest correlation value 

(0.385) i.e. it has good predictively, Figure8. 

Both models revealed the importance of topological 

properties of the ligands especially the surface area 

(MOPLPROP_AREA descriptor in CoMFA and MOPAC, vsurf 

CW*descriptors in QuaSAR). By calculating the total surface area, 

polar surface area, solvent accessible surface area logP for the four 

different nuclei included in this study exemplified by compounds 

1, 4, 38 and 61 as shown in Table 2, we can conclude that 

isoquinolin-1-one is the most active ring. It has large logP value, a 

large molecular surface area in 3D and the smallest polar surface 

area as shown in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5: The correlation plot between the actual pIC50 and predicted pIC50 for training set. 

 

 

 

 
Fig. 6: External validation of the developed model, diagram between the actual (black line)  

and predicted (blue line) pIC50 for the training set where residual values were less than 1. 
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Fig. 7: External validation of the developed QuaSAR model, the correlation plot of actual pIC50 versus predicted pIC50 for test set. 

 

 

 
Fig. 8: External validation of the model, the correlation plot between actual pIC50 and residual values for test set. 

 

 

Table 2: Calculated topological parameters for four heterocyclic nucleus included in this study showing the influence of lipophilicity, dipole moment and 
surface area properties on biological activity. 

          Parameters Compound 1 Compound 4 Compound 38 Compound 61 

o IC50 nM 5000 97 42 19 

o logP 1.64 1.46 3.14 3.14 
o Dipole moment 6.45 7.53 4.05 4.17 

o Molecular surface area (Van der Waals (3D)) 289.33 344.47 326.69 329.16 

o Polar surface area (2D) 41.99 32.34 41.46 29.10 
o ASA 395.29 427.40 438.18 434.10 

o ASA+ 230.81 295.57 261.55 265.32 

o ASA- 163.86 131.84 176.62 168.69 
o ASA_H 336.05 388.98 395.10 390.14 

o ASA_P 58.24 38.42 43.08 43.87 

ASA: water accessible surface area, ASA+: Water accessible surface area of all atoms with positive partial charge, ASA-: Water accessible surface area of all 

atoms with negative partial charge, ASA_H: Water accessible surface area of all hydrophobic atoms, ASA_P: Water accessible surface area of all polar atoms. 
All parameters were calculated by Marvin sketch. 
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Molecular Docking Analysis 

Docking study was carried out by using ligands docking 

on the active site of three different crystal structures of TNKS-2 

(PDB: 3U9H, 4UX4 and 3KR8) using two different softwares, 

MOE (MOE, 2017) and LeadIt (BioSolveIT, 2017),to understand 

the binding mode of 2-arylquinazolin-4-one (A), 3-

arylisoquinolin-1-one (B) arylnaphthyridinone (C) and 

aryltetrahydronaphthyridinone (D) derivatives as TNKS-2 

inhibitors. To validate the ligands docking, the protein was docked 

with nicotinamide and XAV939. Nicotinamide as well as all tested 

compounds has the essential nicotinamide pharmacophore 

requirement for inhibiting TNKS-2.They form three H-bonds with 

Gly1032 and Ser1068. Hydrophobic interaction with Tyr1060 and 

Tyr1071 was also observed. Figure 9 gives details of their docking 

analysis. 

The aforementioned binding interactions were not 

enough for potent inhibitors. Strong inhibitor, XAV939, was 

docked in the active site of the catalytic domain of TNKS-2 as 

shown in Figure 10. The 3D pose showed the nicotinamide subsite 

as a deep pocket having Gly1032 and Ser1068 at the bottom of the 

pocket where XAV939 form three H-bonds mimic nicotinamide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It binds to the HYD triad of the active site by forming H-

bond between sulfur and Glu1138 and hydrophobic attraction 

force with His1031 and Tyr1060. The lipophilicity of the active 

site is due to Pro1034 and Phe1035 in the F-loop as well as 

Ile1075 in the G-loop (Haikarainen1 et al., 2014). XAV939 

formed π-π stacking with Tyr1071. Hydrophobic attraction forces 

with Phe1035, His1048, Tyr1071 and Ile1075 were also observed. 

The contour drawn around the ligand is not broken (black dotted 

curved line) and is indicative of the presence of enough steric 

room for the ligand inside the binding pocket. 

Analysis of the docking interaction of potent inhibitors, 

compounds 27, 45 and 47, on TNKS-2 crystal structures, 4UX4, 

3U9H and 3KR8, demonstrated the same ordinary binding 

interactions mimic nicotinamide by using MOE program. On the 

other hand, LeadIt program captured H-bond between both NH2 

and OH, in compounds 45 and 47respectively, and Ala1049 which 

explained their high activity as shown in Figure 11.Analysis of the 

docking mode of compounds,29-37 and 50, showed an additional 

H-bond interaction of hydroxyl and amino groups, respectively, 

with Met1113 which explained their high potency as shown in 

Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    
Fig. 9: 2D-pose of the interaction made by nicotinamide (left) and compound 1(very week inhibitor) (right), on 3U9H using MOE. 

H-bonds are indicated as dotted arrows. Both are showing hydrogen bond interaction with Gly1032, Ser1068. Both had hydrophobic attraction force indicated as 
a blue shadow around the amino acid residue, with Tyr1060, Tyr1071. Compound 1 showed π-π stacking, as indicated by green dotted line, with Tyr1071. 

 

 
Fig. 10: 3D-pose (left, by leadIt) and 2D-pose (right, by MOE) of the interaction made by XAV939, on 3U9H. 

3H-bonds are indicated as dotted arrows with Gly1032, Ser1068, Glu1138, hydrophobic attraction force indicated as light-blue halos around the amino acid 

residue, with His1031, Phe1035, His1048, Tyr1060, Ile1075, π-π stacking, as indicated by green dotted line, with Tyr1071, 2 fluoride atoms with high solvent 

accessible surface area (blue smudge) are in the interior region of the binding pocket filled with water 
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The presence of halogens at the paraposition, especially 

as in the case of compound 33, demonstrated a unique feature 

because they increase the lipophilicity, such as Br, and are H-bond 

acceptor. As shown in Figure 12, bromide atom is located in a 

lipophilic pocket and formed a hydrophobic attraction force with 

His1048 and Ile1075. This pocket is filled with water, which could 

form H-bond with Br as observed in the high solvent accessible 

surface area of the ligands plotted directly onto the Br in the form 

of a blue smudge (right). In case of compound 50,with a methyl 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

group at the para position, ishydrophobic with high solvent 

accessible surface area (blue smudge) and are likely to be 

energetically disfavored. The high potency of compounds 28 and 

48 was observed as a result of binding to the adenoside subsite 

because the long Cbzside-chain was extended to interact with the 

adenoside subsite amino acids by forming strong hydrophobic and 

π-π stacking with Ile1075in addition to hydrophobic attraction 

force Phe1035 (Haikarainen1 et al., 2014). The formation of H-

bond between amino group and Ala1049 play an important role in 

 
Fig. 11: 2D-pose views (right, by MOE) for compound 27 and 2D-pose (middle and left, by leadIt) for compounds 45 and 47. 

4H-bonds indicated as dotted arrows with Gly1032, Ser1068, Ala1049, hydrophobic attraction force indicated as light-blue halos around the amino acid residue, 
with His1031, Tyr1060, Tyr1071, Ile1075, π-π stacking, as indicated by green dotted line, with Tyr1071, OH group with high solvent accessible surface area 

(blue smudge) is in the interior region of the binding pocket filled with water. 

 
 

 
Fig. 12: Docking interaction of compound 33 (right) and compound 50 (left) on 3U9H. 

4H-bonds formation with Gly1032, Ser1068, and Met1113, π-π stacking with Tyr1071, hydrophobic attraction force with His1031, His1048, Tyr1060, Tyr1071, 

Ile1075, high solvent accessible surface area of the ligands plotted directly onto the Br and CH3 in the form of a blue smudge. 
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increasing their activity as shown in Figures 13 and 14.Although it 

had the required nicotinamide pharmacophore, low potency of 

inhibitor 55 with 2,6-dichloro substituents is explained byits 

sterically disfavored orientation in active site which resulted in the 

absence of H-bond interaction with Ser1068 as shown in Figure 

15. The presence of two chlorosubstituents at the ortho positions 

may make strong electrostatic repulsion with an important amino 

acid residue Glu1138, which decreased the complex stability. 

Docking calculations showed that compound 55 has the worst 

docking score and protein-ligand clash of 10.08as shown in Tables 

(1a, b & c).  

This could be the reason for lowering the potency of 

compound 55 compared to XAV939 which is in a good agreement 

with the experimental value. In case of inhibitor 58 with 

thiophenyl ring, its high potency may be explained by the 

observed H-bond with Ser1033 as shown in Figure 16. In 

conclusion, the results obtained from the established models, 2D, 

3D-QSAR, and docking analysis, we can assess the structural 

requirements for selective, potent TNKS-2 inhibitor as follows: (1) 

nicotinamide pharmacophore is essential for activity and form              
.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

important 3H-bonds with Ala1032 and Ser1068. (2) H-bond donor 

group like OH, NH2 in R1 position improves the biological activity 

by interacting with Ala1049 as well as in R2 position by forming 

H-bond with Met1113 in the active site. (3) Both electron donors 

like OCH3 and bulky electron acceptors such as Br in R1 position 

increase the inhibitory activity as explained by the electrostatic 

and steric fields of the developed CoMFA and docking results. (4) 

Long chain, like Cbz, in R1 position increase activity by extending 

outside the nicotinamide subside and binding to the adenoside 

subsite. (5) Thiophen ring at 3 position with sulfur as heteroatom 

increase activity by forming H-bond with Ser1033. (6) The 

molecular docking highlights the hydrophobic interactions 

between aromatic structure and amino acids, Tyr1060, Tyr1071, 

Ile1075. Substitution at the 2' and 6' position with chlorides at 3-

phenyl ring is not tolerated as explained with the CoMFA and 

docking analysis. Depending on the results of this study, new 

TNKS-2 inhibitors were designed to be synthesized and are 

expected to be potent inhibitors. PIC50 of proposed compounds 

were calculated by our developed QSAR models as shown in 

Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13: The putative 2D-binding modes and molecular interactions of compound 28 in the active site of TNKS-2 by MOE on 3U9H (right) and LeadIt on 4UX4 

(middle). 3D mode of interaction by LeadIt (left) showed the protein by molecular surface and 28 was depicted by sticks. MOE captured 3H-bonds with 

Gly1032 and Ser1068, π-π stacking with Tyr1071 and Ile1075, strong hydrophobic attraction forces with Phe1035, Tyr1060, Tyr1071 and Ile1075, weaker 

hydrophobic attraction force with His1031, Tyr1050, Gly1074, and Gly1078, a hydrophobic benzyl group with high solvent accessible surface area (blue 
smudge) are extended outside the nicotinamide binding pocket and bind to the adenoside subside (right and left). LeadIt captured 3H-bonds with Gly1032 and 

Ala1049 (middle). 

 

 

 
 

Fig. 14: 2D-binding interactions of compound 48 in the active site of TNKS-2 by MOE on 3U9H (right) and LeadIt on 3KR8 (left). 
4H-bonds with Gly1032, Ser1068 and Ala11049, π-π stacking with Tyr1071, strong hydrophobic attraction forces with Tyr1050, Tyr1060, Tyr1071 and 

Ile1075, weaker hydrophobic attraction force with His1031, Phe1035, and His1045, a hydrophobic benzyl group with high solvent accessible surface area (blue 

smudge) are extended outside the nicotinamide binding pocket and bind to the adenoside subside (right). 
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CONCLUSIONS 
 

A modeling study of a series of TNKS-2 inhibitors was 

carried out using CoMFA, 2D-QSAR, methods and docking 

analysis. CoMFA model included steric, electrostatic fields, 

MOLPROP-AREA descriptors & showed a satisfactory statistical 

quality and predictive abilities as show the R
2 

and Q
2 

values. 

Meanwhile, the 2D-QuaSAR model generated indicating that both 

2 D-descriptors (VAdjEq, BCUT_PEOE_2, BCUT_ SMR_1) and 

3D-descriptors (AM1_IP, PM3_HOMO, vsurf_CW*, FASA+,              
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FCASA+) have important influences on the ligand–receptor 

interaction. The predictive ability of the QuaSAR model (R
2
 = 

0.795, R
2
 (cv) = 0.607, RMSE = 0.336, and RMSE (cv) = 0.483) 

was also as good as the CoMFA model. The molecular docking 

study discussed the appropriate binding differences between           

these series of compounds when interacting with TNKS-2 active 

side. 

We discussed the structural requirements for selective, 

potent TNKS-2 inhibitor and designed four potent inhibitors to be 

synthesized in the future. 

 
Fig. 15: 2D interaction of compound 55 in the active site of 4UX4 using LeadIT(right) and MOE (middle and left). 

Improper orientation of the ligand in the active site with the absence of interaction with Ser1068 and/or Gly1032, probable repulsion with Glu1138 (left). 
 

 

 
 

Fig. 16: 2D pose view of compound 58 in the active site of TNKS-2, 3U9H using MOE. 

4H-bonds with Gly1032, Ser1068 and Ser1033, π-π stacking with Tyr1071, hydrophobic attraction force with His1031, His1048, Tyr1060, Tyr1071 and Ile1075.  
 

 

Table 3: New designed potent TNKS-2 inhibitors and their predict biological activity using our developed CoMFA and QuaSAR models. 

Pred PIC50 

QuaSAR 

Pred PIC50 

CoMFA 
R1 X Compound Chemical structure 

8.02 8.20 CH3 CH2 63 

 

6.82 7.74 CH3 O 64 
7.77 8.07 CH3 

+NH2 65 

7.75 7.53 CH3 S 66 
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