
 

© 2017 Ruslin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlikeUnported 
License (http://creativecommons.org/licenses/by-nc-sa/3.0/). 

 
 
 

Journal of Applied Pharmaceutical Science Vol. 7 (12), pp. 001-007, December, 2017 

Available online at http://www.japsonline.com 

DOI: 10.7324/JAPS.2017.71201 

ISSN 2231-3354    

 

QSAR, Molecular Docking and Dynamics Studies of Pyrrolo[2,3-

b]Pyridine Derivatives as Bruton’s Tyrosine Kinase Inhibitors 

 
Ruslin

1
, Nirwana

1
, Muhammad Arba

1*
, Mukhsar

2
, Daryono Hadi Tjahjono

3
 

 

1
Faculty of Pharmacy, Halu Oleo University, Kendari, Indonesia. 

2
Department of Mathematics, Halu Oleo University, Kendari, Indonesia. 

3
School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.  

 
 
 

 
 

 

ARTICLE INFO 
 
 

 

ABSTRACT 

 

Article history: 

Received on: 02/09/2017 

Accepted on: 21/10/2017 

Available online: 30/12/2017 
 

 

 

 

 

 

 

 

 

 

 

 

Bruton’s tyrosine kinase (BTK) is involved in multiple signaling pathways regulating the B cell receptor, which 

is identified as an attractive drug target for lymphoid malignancies. The aims of the present study were to 

develop a model of Quantitative Structure Activity Relationship (QSAR), and to perform molecular docking and 

molecular dynamics study of some pyrrolo[2,3-b]pyridine derivatives as potential inhibitor of BTK. The 

selection and calculation of suitable descriptors was performed by using Molecular Operating Environment 

(MOE 2009.10), while Multiple Linear Regression (MLR) was used to generate QSAR models. The result of 

study revealed that the validated QSAR model satisfied the statistical criteria for correlation coefficient, leave-

one-out validation coefficient, Fischer’s value, and external validation at 0.944, 0.740, 14.873, and 0.792, 

respectively. Using the validated QSAR model, a novel compound was proposed, which had IC50 lower than 

that of parent compound. It was then docked into the active site of BTK. The molecular dynamics simulation 

showed that the new compound was stable during 40 ns dynamics run. The MM-PBSA calculation showed that 

the new compound had lower binding free energy than those of native ligand and parent compound, which 

indicated that the new compound could be researched further. 
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INTRODUCTION 
 

Bruton’s tyrosine kinase (BTK) is a non-receptor 

tyrosine kinase, which is critical for B-cell development, 

differentiation, and signaling (Mohamed et al., 2009; Tsukada et 

al., 1993; Vetrie et al., 1993). BTK is considered as an attractive 

drug target, particularly for the treatment of several diseases 

including cancer, due to the fact that it is over expressed in many 

B cell leukaemias (Zhao et al., 2015; Hendriks et al., 2014).  

Several BTK inhibitors have been developed including 

ibrutinib, which showed antitumor activity against various B cell 

malignancies. In accordance with those facts, Zhao et al. (2015) 

synthesized a series of pyrrolo[2,3-b]pyridine-based BTK 

inhibitors using scaffold-hopping drug design strategy. They 

found that one compound (3P) showed superior activity to that            
.        
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RN486 and pyrrolo[2,3-d]pyrimidine derivative 2 both in BTK 

enzymatic (IC50 = 6.0 nM) and cellular inhibition (IC50 = 14 nM) 

assays. To further develop novel compound of BTK inhibitor 

based on the pyrrolo[2,3-b]pyridine, the present study was devoted 

to identify a quantitative structure-activity relationship of the 

pyrrolo[2,3-b]pyridine derivatives and to determine their binding 

modes and structural stabilities as BTK inhibitor. In the computer-

aided drug design methods, the quantitative structure–activity 

relationship (QSAR) study combined with molecular docking and 

molecular dynamics simulation is the accepted method for 

predicting novel and potent lead compounds (Arba et al., 2016). 

While QSAR develops a model for predicting new potent 

compound (Kumar et al., 2016; Shinde et al., 2017), molecular 

docking predicts the binding mode of a ligand in the active site of 

its protein target (El-Sawy et al., 2017; Abdalsalam, 2017; Khan et 

al., 2017). On the other hand, molecular dynamics simulation 

coupled with MM-PBSA calculation is useful to evaluate the 

stability and binding free energy of a ligand to its protein target. 

http://creativecommons.org/licenses/by-nc-sa/3.0/
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COMPUTATIONAL METHOD 
 

Data set 

The pyrrolo[2,3-b]pyridine derivatives (Fig. 1 and Table 

1) reported by Zhao et al. (2015) were used as data set. The 

biological activities (IC50) of those compounds were converted into 

their negative logarithmic scale (pIC50 = −log IC50). The data set 

comprised of 22 compounds which covered a wide range of IC50 

values, spanning from 6 nM to 562.2 nM. Before proceeding to 

further analysis, recognition of outliers was performed based on 

their studentized deleted residual values. A compound was 

considered as an outlier if it has studentized deleted residual value 

higher than 2 or less than −2. Next, all compounds were grouped 

into training set and test set. The biological activities of the 

compounds were sorted, and 25 % of the data was randomly 

selected as the test set, while the remaining compounds were used 

as the training set. 

 

Table 1: Pyrrolo[2,3-b]pyridine derivatives used in the study. 
 

No Compounds R X Y Z IC50 (nM) 

1 3A H CH N CH 562.2 

2 3B CH3 CH N CH 395 

3 3C 

OH

 

CH N CH 39.8 

4 3D 

O

 

CH N CH 27.5 

5 3E 
NH2  

CH N CH 110.3 

6 3F 

O

 

CH N CH 21.3 

7 3G 

O

N

 

CH N CH 12.1 

8 3H 

O

N

 

CH N CH 38 

9 3I 

O

N

O
 

CH N CH 18.1 

10 3J 

S O

 

CH N CH 78.1 

11 3K 

N O

 

CH N CH 68.3 

12 3L 
N

N

 

CH N CH 20.6 

13 3M 
NH

 

CH N CH 28.3 

14 3N N

O

 

CH N CH 6.7 

15 3O N

O

 

CH N CH 10.4 

16 3P N

O

N

 

CH N CH 6 

17 3Q N

O

N

O
 

CH N CH 7.3 

18 3R N S
O O

 

CH N CH 7.1 

19 3S N S
O O

N

 

CH N CH 9.7 

20 3T N

O

 

CH N CH 31.4 

21 3U 

O

N

 

N N CH 33.3 

22 2 N

O

N

 

CH N N 7 

 

N

F

OH

Z

Y

X

N
H

R

O

 
Fig. 1: Structure of target compound. 

 

Geometry optimization and descriptor calculation 

Gaussian 09 software (Frisch et al., 2009) was used for 

geometry optimization of all molecules using semi-empirical 

Austin Model-1 (AM1) method. All 13 descriptors, i.e. dipole 

moment (AM1_Dipol), total energy (AM1_E), electronic energy 

(AM1_Eele), formation heat (AM1_HF), HOMO energy 

(AM1_HOMO), LUMO energy (AM1_LUMO), polarity (Apol), 

hydrophobic surface area (ASA_H), water solubility (Log S), 

partition coefficient (Log P), globularity (Glob), molar refractivity 

(Mr), and van der Waals volume (Vol), were calculated using 

Molecular Operating Environment (MOE 2009.10) software. 

 

QSAR model calculation and validation 

The QSAR model was developed using the multiple 

linear regression analysis by using SPSS for Windows (version 19; 

SPSS Inc., Chicago, IL, USA). The QSAR model was generated 

using descriptors as the independent variable (X) and biological 

activity values (pIC50) as the dependent variable (Y). The 

statistical reliability of the QSAR model was evaluated based on 

several criteria, i.e. squared correlation coefficient (R
2
), Fischer’s 

value for statistical significance (F), adjusted squared correlation 

coefficient (Radj
2
 ), and standard error of estimation (SEE) 

(Dearden et al., 2009). In addition, internal validation of the 

developed model was performed by using leave-one-out (LOO) 

cross-validation coefficient (q
2
) (Golbraikh and Tropsha, 2002), in 

which each compound in the training set was eliminated in the 
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calculation of linear regression analysis. The value of q
2 

was 

calculated according to the following formula: 
 

     
        

        
 

 

Where, q
2 

is coefficient of internal cross validation; y is observed 

activity of compound i; ŷ is predicted activity of compound i; and 

ȳ is the average observed activity of compound i. The value of q
2 
> 

0.5 indicated the predictive ability of the developed model 

(Golbraikh et al. 2003; Tropsha et al., 2003). In addition, Tropsha 

et al. (2003) explained that the internal cross validation should be 

accomplished by external validation using test set, which was 

represented by the value of external cross validation coefficient 

(R
2pred

). A model was considered to be valid if it possessed R
2pred

 

value higher than 0.6. 

 

New compound design and molecular docking 

Using the validated QSAR model, new compound was 

designed and its biological activity was then predicted. The 

compound 3P was used as parent compound as it had the lowest 

IC50 (6 nM) in the experimental study. One compound that had 

lower predicted IC50 than that of the parent compound (3P) was 

then docked to its protein target (BTK). Structure of BTK was 

downloaded from protein data bank (PDB id : 4OTR, X-ray 

resolution : 1.95 Å) (Lou et al., 2015). The docking site was 

centered into the native ligand (2V3) binding site with a grid point 

spacing of 0.375 Å and a dimension of 50 in each x y z direction. 

Other docking parameters were used as default (Arba et al., 2017). 

 

Molecular dynamics simulation 

Each parent compound (3P), new designed compound, 

and native ligand (2V3), complexed with BTK, obtained from the 

docking studies, was taken for molecular dynamics simulations 

using the GPU version of the PMEMD engine of Amber 16 

package (Case et al., 2015; Salomon-Ferrer et al., 2013) by 

employing the ff14SB force field (Maier et al., 2015). The GAFF2 

force field (Wang et al., 2004) and AM1-BCC (Jakalian et al., 

2002) were used to parameterize each ligand. The water model of 

a truncated octahedron TIP3P was used with a minimum distance 

of 10 Å around the complex. The Na+ counterions were added to 

keep the system electroneutral. The Sander module of Amber 16 

was used for minimization, heating, and equilibration. The first 

minimization consisted of 500 steps of steepest descents and 5500 

steps of conjugate gradients with restrained protein (k = 500 kcal 

mol
-1 

Å
-2

), which was followed by the second minimization with 

the restrained backbone atoms of protein and the third 

minimization without any restraint, respectively.  

The heating step was performed gradually from 0 to 100, 

100 to 200, and 200 to 300 K; each of which was carried out for 50 

ps in NVT ensemble with a time step of 0.0005 ps and restraints 

(k) of 5 kcal mol
-1 

Å
-2

. Next, each system underwent relaxation 

from 5 to 3 and 0 kcal mol
-1 

Å
-2 

during three 100 ps equilibration 

steps in NPT ensemble. Lastly, production step was performed for 

40 ns by using pmemd.cuda module in Amber 16 in an isothermal 

isobaric ensemble. The Langevin thermostat with a collision rate 

of 1.0 ps
-1 

was used to keep the system in 300 K thermal bath. All 

covalent bonds which involve hydrogen atoms were restrained 

using SHAKE algorithm (Ryckaert et al., 1977).  

The PME method was employed to treat long-range 

electrostatic interactions with an integration step of 2 fs (Darden et 

al., 1993). The long-range non-bonded interactions were 

calculated with a cutoff distance of 9.0 Å by applying periodic 

boundary conditions. Analyses and extraction of structural 

snapshots were carried out using CPPTRAJ module (Roe and 

Cheatham, 2013), Visual Molecular Dynamics, and Discovery 

Studio Visualizer softwares (Humphrey et al., 1996), respectively.  

 

Binding free energy calculations 

The calculation of binding free energy for each system 

followed the Molecular Mechanics-Poisson Boltzmann solvent 

accessible surface area (MM-PBSA) method as described by 

Kollman et al. (2000) and Arba et al. (2017). The binding free 

energy was calculated based on 200 snapshots extracted from the 

last 5 ns trajectories (Miller et al. 2012). 

 

RESULTS AND DISCUSSION 
 

To shed light on the structure-activity relationship, 

QSAR study was performed using the data set shown in the Table 

1. The biological activity of each compound was changed into 

pIC50 and considered as the dependent variables. The values of 13 

descriptors were used as the independent variables. First, 

determination of outlier compounds was performed by calculating 

their studentized deleted residual values. The results showed that 

four compounds (3J, 3T, 3F, 3Q) were identified as the outliers 

(Table 2). The four compounds were excluded from data set. 

Furthermore, the data set was divided into training set (15 

compounds) and test set (3 compounds). The division into the two 

sets was performed based on their pIC50 (Table 2). 

 

Table 2: The studentized deleted residual values of each compound. 

Compounds which were identified as outliers and test set were assigned by * 
and **, respectively. 
 

Compound pIC50 Studentized Delete Residual 

3A −2.7499 −0.57195 

3B −2.5966 −0.60341 

3E** −2.0426 0.87682 

3J* −1.8927 −4.89310 

3K −1.8344 −0.84291 

3C −1.5999 0.35528 

3H −1.5798 −0.29433 

3U −1.5224 −1.35334 

3T* −1.4969 −2.93216 

3M −1.4518 1.54410 

3D −1.4362 0.29560 

3F* −1.3284 2.17547 

3L** −1.3139 0.62762 

3I −1.2577 −1.14510 

3G −1.0828 0.40707 

3O −1.0170 −0.04766 

http://pubs.acs.org/author/Maier%2C+James+A
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3S −0.9868 −0.40485 

3Q* −0.8633 2.00722 

3R** −0.8513 0.61340 

2 −0.8451 0.88393 

3N −0.8261 0.38959 

3P −0.7782 −0.50057 

 

Next, the training set consisting of fifteen compounds 

was used to perform the multiple linear regression analysis for 

developing QSAR model. The multiple linear regression results 

were then compiled and ranked based on several statistical 

parameters, including the correlation coefficient (R), the 

determination coefficient (R
2
), and the Fischer’s value (F). The 

best QSAR model obtained was as follows:   

pIC50 = 19.40158 + 0.00007(AM1_E) + 3.01906(AM1_HOMO) – 

0.04234(Apol) – 0.033587(LogP) + 0.10249(vol) 

The model’s equation satisfied the statistical requirements as 

shown in Table 3.  

 

Table 3: Statistical results of the QSAR model for pyrrolo[2,3-b]pyridine 

derivatives. 

Descriptors q2 R R2 Adjusted 

R2 

Standard 

Error of 

Estimation 

(SEE) 

AM1_E, 
AM1_HOMO, 

Apol, Log P, Vol 

0.740 0.944 0.892 0.832 0.244 

 

Evaluation of the model with leave-one-out (LOO) cross-

validation coefficient (q
2
) showed that the q

2 
value was 0.740, 

which indicated that the model was valid. According to the 

developed QSAR model, the biological activity of a compound 

was influenced by total energy (AM1_E), HOMO energy 

(AM1_HOMO), polarity (Apol), partition coefficient (Log P), and 

van der Waals volume (Vol). The model implied that the positive 

contributions came from AM1_E, AM1_HOMO, and vol, while 

the negative contribution originated from Apol and Log P. The 

relationship between the predicted pIC50 and observed pIC50 are 

shown in Fig. 2.  
 

 
Fig. 2: The relatioship between observed pIC50 and predicted pIC50 of 

pyrrolo[2,3-b]pyridine derivatives. 

 

The reliability of the model was further assured by an 

external validation of the test compounds as shown in Fig. 2 with 

R
2pred

 = 0.79, implying that the developed model was valid 

(Golbraikh and Tropsha, 2002). 

 

New compound design and molecular docking  

Using the validated QSAR model, a new compound was 

designed. The new compound had lower predicted IC50 than that of 

parent compound (3P). The result of calculation was shown in 

Table 4. 

 

Table 4: The predicted IC50 of the new compound. 

Compound Structure 
Predicted 

IC50 

Parent 

compound 

(3P) 

N

F

O

HO

N N
H

N

O

N

 

4.70 

1I 

N

F

O

HO

N N
H

N

O

N

N

 

3.63 

 

The new designed compound, i.e. 1I, which had lower 

predicted IC50 was then docked to the target protein (Bruton’s 

Tyrosine Kinase). First, native ligand was redocked to the BTK 

and the docking result showed that both X-ray and docking 

conformations had root-mean-square deviation (RMSD) of 0.89 Å, 

indicating the reliability of the molecular docking protocol (Jones 

et al., 1997; Morris et al., 1998). The interaction between 2V3 and 

BTK occurred through hydrogen bonds with Lys430, Met477, and 

Ser538 (Fig. 3b). The amino acid residues constituting active site 

of the BTK, for instance Phe413 and Asp539, were observed to 

interact with 2V3 through van der Waals interactions. Fig. 3 

depicts crystallographic and docking conformations of 2V3.  

In case of 3P and 1I, hydrogen bonds were observed with 

Lys430. Hydrogen bond with Asp539 was also formed, in which 

ligand acted as donor of hydrogen bonds. The hydrogen bonds 

were also detected between 1I and Met477, in which 1I acted as 

both donor and acceptor of hydrogen bonds. Hydrogon bonds, in 

which ligand acted as the donor, were also observed with Asp521 

and Tyr551 in 3P. In addition, residues of the active site 

surrounding the ligand interacted through hydrophobic interaction 

with each ligand. Fig. 4 depicts interaction of 3P and 1I in the 

ligand binding domain of BTK. 
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Molecular dynamics simulations  

Based on best docking conformation, molecular 

dynamics simulations were carried out on each ligand which was 

complexed with BTK to provide structural, dynamical, and 

energetic information on the interactions between ligands and 

BTK to determine the binding affinity of those ligands to BTK. 

MD simulation was also performed for 2V3-BTK complex as a 

reference structure. Before proceeding to energetics analysis, each 

system equilibration was monitored by checking the values of 

root-mean-square-deviation (RMSD) of heavy atoms of protein 

with respect to the initial structure. Fig. 5 shows the RMSD plot of 

heavy atoms of protein for each complex with respect to 

simulation time. Generally, the RMSD value below 2 Å indicates 

the stability of each complex during 40 ns dynamics simulation.  

 
Fig. 5: The RMSD values of backbone atoms of the receptor in complexed 

with 2V3 (red), 3P (green), and 1I (blue) during 40 ns dynamics run. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 

 

 

 
 

 
 

The effect of ligand bindings on the mobility of the BTK 

residues was reflected in root-mean-square fluctuation (RMSF) of 

the backbone atoms of protein that was plotted against the residue 

numbers, as depicted in Fig. 6. Most protein residues in each 

complex had RMSF values lower than 2 Å, which indicated that 

the ligand binding did not induce conformation change of the 

protein (BTK). 
 

 
Fig. 6: Plot of RMSF versus residu number during 40 ns dynamics simulation: 
2V3 (red), 3P (green), and 1I (blue). 

 

MM-PBSA binding free energy 

Binding free energies of all complexes were calculated 

using the MM-PBSA method to assess the energetic aspect of 

association of ligands to BTK. Table 5 reports binding free 

energies and separate energy terms for each ligand-BTK complex. 

It is shown that MM-PBSA prediction on affinity of 2V3 (ΔGpred = 

              

a                                             b

 
Fig. 3: a. Superimposition of 2V3 before docking (blue) and after docking (green), b. Interaction of 2V3 with BTK. 

 

a                                                          b

 
Fig. 4: The docking conformation of each 3P (a) and 1I (b) in the ligand binding domain of BTK with H-bond (green color). 
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−33.58 kcal/mol) was extremely higher than the experimental data 

(ΔGexp = −11.79 kcal/mol, ΔG = RT ln Kd ≈ RT ln IC50, where IC50 

= 4 nM) (Lou et al., 2015). Despite the fact that the MM-PBSA 

calculation tends to be over predictive (Genheden and Ryde, 

2015), the exlusion of the entropy term in the present study clearly 

contributes to the large discrepancy.  

 

Table 5: The binding free energies and the corresponding components 
(kcal/mol) of each compound bound to the BTK. 

Comp ΔEELE ΔEVDW ΔEPBCAL ΔEPBSUR ΔENONPOLAR ΔEPBELE ΔGPBTOT 

2V3 −47.72 −62.66 82.91 −6.11 −68.77 35.19 −33.58 

3P −27.78 −66.68 69.35 −6.14 −72.82 41.57 −31.25 
1I −58.50 −76.55 92.77 −6.56 −83.11 34.27 −48.84 

 
Moreover, the binding free energies of BTK with 

designed ligand (1I) was more negative (−48.84) than that of 2V3 

(−33.58), which indicated that 1I bound more tightly to BTK than 

2V3. In the complex of 1I-BTK, the nonpolar contribution 

(ΔENONPOLAR) originated from the van der Waals energy (ΔEVDW) 

and the nonpolar solvation energy (ΔEPBSUR) was more negative 

than those of both 2V3 and 3P. It was also the case for the van der 

Waals (ΔEVDW) and electrostatic (ΔEELE) energy terms. However, 

the overall electrostatic contributions (ΔEPBELE) arising from 

favorable Coulomb interactions (ΔEELE) and unfavorable polar 

energy of desolvation (ΔEPBCAL), did not favor the ligand binding. 

The MM-PBSA prediction showed that hydrophobic interactions 

were the main factor in the recognition of  ligand to BTK. 

 

CONCLUSION 
 

QSAR is a mathematical relationship that correlates 

chemical structure and biological activity for a series of 

compounds. In this study, 13 descriptors were used to represent the 

pyrrolo[2,3-b]pyridine structures, which were taken as the 

independent variable, while the biological activities (pIC50) were 

used as the dependent variable. Analysis on MLR resulted in a 

QSAR model that was used to predict the activity of pyrrolo[2,3-

b]pyridine derivative against BTK. The new compound (1I), with 

lower predicted IC50, was then docked to BTK, and it was then 

stable during 40 ns dynamic simulation. The MM-PBSA 

calculation evidenced that the designed ligand might be used for 

further experimental study. 
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