Potential Thyrotropic and Antihypercholesteronemic Activity Exhibited by Ethanolic Extract of *Crataeva nurvala* Bark

Arshvir Kaur1*, Navneet Khurana2, Santosh Kumar Verma3
1Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
2Department of Pharmacology and Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
3Department of Pharmacology, CT Institute of Pharmaceutical Sciences, Shahpur, Jalandhar, Punjab, India.

ARTICLE INFO

Article history:
Received on: 08/10/2017
Accepted on: 11/11/2017
Available online: 30/11/2017

Key words:
Varuna, thyroxine, cholesterol, thyroid stimulating hormone, levothyroxine.

ABSTRACT

Charaka, supports that the imbalance (Ojus) between the three bodily humours (doshas), along the fat (Meda) leads to enlargement of the thyroid gland (Galaganda) and metabolic syndrome. This study aims to evaluate the effect of the ethanolic extract of *Crataeva nurvala* (CNet) bark, on free thyroxine (FT₄), thyroid stimulating hormone (TSH) and serum cholesterol (CHO) in Swiss albino female adult mice over conventional therapy. In this study, the animals were divided into four groups who were made hypothyroid using 6-propyl-2-thiouracil (PTU) for first 15 days and then Group I, treated with vehicle, Group II, treated with LT₄ (14.56 µg/kg), Group III, treated with CNet 400 mg/kg and Group IV treated with CNet 600 mg/kg (p.o.) for another 15 days. The variation in the biochemical parameters was recorded on Day 15 and Day 30. The results were expressed as mean ± SEM, using two-way ANOVA followed by Bonferroni posttests. In comparison with the standard i.e. LT₄, significant (***P<0.001) thyroid stimulant activity was shown by CNet 600 mg/kg, with significant reduction in cholesterol levels whereas, less marked and erratic response with CNet 400 mg/kg was received. *Crataeva nurvala* was found effective at higher dose, that suggest its beneficial role in treating hypothyroidism and associated hypercholesteronemia.

INTRODUCTION

Levothyroxine (LT₄) is the standard replacement therapy in hypothyroidism, clinically that offers a similar life quality, whereas the psychological well being is compromised (Garber et al., 2012; Petersen et al., 1990; Jonklaas et al., 2008; Saravanan et al., 2002). Also, many physiological and pathological conditions can impair LT₄ absorption such as patient factors (compliance), certain foods (e.g. Grapes, coffee, soyabean, papaya etc.), age factor, drugs (e.g. Antacids containing aluminium, sucralate, proton pump inhibitors, rifampicin, antiepileptics, etc.) gastrointestinal diseases (e.g. *Helicobacter pylori* infection, celiac disease). The principal adverse consequences of overtreatment are TSH suppression cardiovascular risk, skeletal or high risk of fracture, especially postmenopausal women, however, bone density does not reduce on short term administration and possible affective disturbances (Rees-Jones and Larsen, 1977; Razvi et al., 2012; Schneider et al., 2012; Ross, 1993; Biondi et al., 1994; Botella-Carretero et al., 2003).

Crataeva nurvala Buch-Ham, belonging to the family, Capparidaceae, synonymously called as *C. magna* (Lour.) DC., *C. religiosa* Hook. F and Varuna (Khare, 2007; Daniel, 2006). It is reported to possess analgesic, neuroprotective, antiarthritic, anticancer, antiadigetic, cardioprotective, anti-inflammatory, antioxidant, hepatoprotective, nephroprotective activities (Khattar and Wal, 2012).
In Ayurveda, thyroid disorders are discussed under the term “Galaganda” (enlarged thyroid gland). Ayurveda supports use of Varuna leaves, stem bark and root bark in regulating equilibrium among three doshas (bodily humours) Vata (air), Pitta (earth) and Kapha (mucous or water), whose imbalance leads to hormonal imbalance (Ojus), most commonly thyroid disorders (Kaur et al., 2016). Traditionally it is also believed to be used for treating cancer, paralysis, thyroid problems etc. (Narayana and Subhose, 2005). So, it was hypothesized that this plant can have beneficial effects in hypothyroidism.

To the best of our knowledge, no scientific data regarding the thyrotropic activity of ethanolic extract of C. nurvala bark (CNet) in preclinical studies in hypothyroid mice is published. This study aimed to evaluate the thyrotropic and antihypercholesterolemic effect of the CNet in mice, whose thyroid status was disrupted by using (6-propyl-2-thiouracil) PTU, an antithyroid drug, that inhibit the thyroid gland and decline the thyroid hormone synthesis via inhibiting thyroid peroxidase (TPO), iodothyronine deiodinases type I (DIO1) and inhibiting thyroid receptor (TR) mediated transcriptional activities by dissociating the nuclear coactivators and by recruitment of corepressors present at the glandular levels thus causing primary hypothyroidism i.e. reducing the levels of FT₄ with concomitant increase in TSH (Moriyama et al., 2007).

MATERIAL AND METHODS

Chemicals

6-Propyl-2-thiouracil (PTU), was supplied by Sigma-Aldrich Chemie GmbH, Levothyroxine Sodium Tablets (Eltroxin-GSK) and all the other chemicals used in extraction and phytochemical screening were of reagent grade.

Animals

Swiss Albino female mice, aged between 3-5 months weighing 25-35 g, procured from Panacea Biotech Ltd, Lalru (140501), India and were housed in polypropylene cage, kept standard laboratory conditions (temperature 25±2° C, relative humidity 30-70% with 12/12h night/dark cycle), were fed with standard pellet diet procured from Shree Jagdambey Feed Industries, Moga, Punjab and water ad libitum for acclimatization period of one week before study.

Ethical approval

The study protocol was duly approved by the Institutional Animal Ethics Committee (IAEC) [Protocol no.: IAEC-CTIPS/2015/VII/0042 (PCL-M)] of the Institute under the guideline of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Ministry of Environment & Forests, New Delhi.

Procurement and preparation of the CNet

The dried stem bark of C. nurvala (3.5 kg) was procured from Herbal Health Research Consortium Pvt. Ltd. Amritsar (Lot No. VRN-024, Certificate of Analysis A. R. No. 06/2015/IH/086, in compliance with Q.S.I.M.P. Volume 10, Page no. 106-108). A voucher (HHRC/RT/0416/15-16) and plant specimen has been submitted to the department of Pharmacology, of our college for future reference.

The bark extract was prepared using a repeated maceration technique (Hussain et al., 2013). The shade dried bark of C. nurvala (3.5 kg) was rendered dust free and the size was reduced. The coarse powdered material was macerated with 95% ethanol (1 kg in 3 l), the soaked material was strained through a double layered muslin cloth and the marc was pressed. The two filtrates were then combined and then clarified by filtering through Whatman No. 1 filter paper. This process was repeated every third day for 12 days. The filtrates from the four macerations were then combined and the solvent was recovered under vacuum at 37°C and the extract was concentrated to obtain brown pasty mass. The percentage yield was found to be 1.37 %. The suspension (20 mg/ml) is prepared with 1 % of Gum Acacia solution and stored at 2-8°C in amber colored bottle.

Phytochemical screening

The phytochemical identification of CNet was carried out using qualitative test like Keller-Killiani test, lead acetate test, sodium hydroxide test, silver nitrate test, Salkowski test, Lieberman’s test, froathing test etc.

Evaluation of thyrotropic activity of C. nurvala in PTU induced hypothyroidism

Mice of 25-35 g were divided into four groups, administered PTU (10 mg/kg orally) for 15 days and then treated with vehicle, standard and test drug for next 15 days (Panda and Kar, 2005).

- Group I, PTU (10 mg/kg) + VEH (Negative control)
- Group II, PTU (10 mg/kg) + LT₄ (14.56 µg/kg) (Standard)
- Group III, PTU (10 mg/kg) + CNet 400 mg/kg
- Group IV, PTU (10 mg/kg) + CNet 600 mg/kg

C. nurvala has shown promising hypocholesteronemic activity in other animal model, moreover, literature sources support its neuroprotective, hepatoprotective and nephroprotective activities at different doses. However, two dose levels i.e. 400 and 600 mg/kg were evaluated in this study (Sikarwar and Patil, 2012; Bhattacharjee et al., 2014; Panda et al., 2014; Shelkea et al., 2011).

The variation in the FT₄, TSH and CHO were analyzed via comparing Day 15th with Day 30th results in individual groups. Dosage administration was done every day between 9.00 am to 10.00 AM to avoid circadian variation.

Serum preparation

Blood sampling was done after 24 hours of the last dose on Day 15th and Day 30th via retro-orbital method. The samples were allowed to clot at room temperature and then centrifuged for

90
Biochemical estimation in serum

Serum FT₄, TSH was determined by ELISA as per the provided protocol by ERBA Lachema s.r.o., Czech Republic and Calbiotech Inc., Austin, CA on Day 15th and Day 30th. Serum CHO levels were determined using ERBA Mannheim GmbH, Germany autoanalyser kit.

Statistical analysis

The results are expressed as mean ± SEM, (n=6), Where ***P<0.001, **P<0.01 and *P<0.05 (PTU+VEH as control at Day 30th) and ###P<0.001, ##P<0.01 and #P<0.05 (PTU+LT₄ as control at Day 30th) for serum biochemical estimation, using Two-way RM ANOVA followed by a Bonferroni post test to compare replicated means by row in each column representing different points of time.

RESULTS

Phytochemical analysis

The CNet was screened for preliminary phytochemical identification tests which revealed the presence of mainly cardiac glycosides, flavonoids, alkaloids, terpenoids and saponins.

Effect on FT₄

The administration of PTU, an antithyroid drug for 15 days in all groups, was associated with low serum FT₄ levels, that significantly rose with the administration of standard drug, LT₄ i.e. 2.343 ng/dl (**P<0.01), test drugs CNet 400 and CNet 600 i.e. 3.258 ng/dl and 3.709 ng/dl (**P<0.001) at day 30th in comparison with PTU+VEH. Rise in FT₄ in PTU+CNet 600 was even considerably higher than standard, i.e. PTU+LT₄ (**P<0.05) (Table 1, Figure 1).

Effect on TSH

The administration of PTU for 15 days led to increase in TSH levels in PTU+VEH and PTU+CNet 600, whereas less rise was observed in other two groups. The administration of CNet 600 declined significantly the levels of TSH in PTU+CNet 600 (**P<0.05) i.e. 0.209 µIU/ml w.r.t PTU+VEH, but the levels were found to be raised in an erratic pattern in PTU+CNet 400 (**P<0.05) in comparison with standard group (Table 1, Figure 2). However, the administration of vehicle and LT₄ showed no significant change in levels of TSH in PTU+VEH and PTU+LT₄ at day 30th.

Effect on CHO

The administration of PTU elevated the levels of cholesterol, that found to be less in PTU+CNet 400 and PTU+CNet 600 w.r.t. negative control (**P<0.001) and standard group i.e. 36.578 mg/dl (##P<0.01) and 29.585 mg/dl (###P<0.001) at Day 30th (Table 1, Figure 3). However, the levels elevated in PTU+VEH and PTU+LT₄.
DISCUSSION

Various studies supported the presence of cardiac glycosides (Sinha et al. 2013), flavonoids, alkaloids (Ahmad et al. 1987, Sinha et al. 2013, Bhattacharjee et al. 2014), terpenoids and saponins (Rao et al. 2011) in stem bark of <i>C. nurvula</i>.

In this study, the ethanolic extract of <i>C. nurvula</i> was evaluated for its thryotropic effect in PTU induced hypothyroidism, that is an antithyroid drug, that decline the thyroid hormone synthesis via inhibiting thyroid peroxidase (TPO), iodothyronine deiodinases type I (DIO1) that peripherally convert T₄ to T₃ (Bianco et al., 2002), in thyroid gland, liver etc. and inhibiting thyroid receptor (TR) mediated transcriptional activities at the glandular levels thus causing primary hypothyroidism i.e. reduced FT₃ levels with concomitant increase in TSH (Moriyama et al., 2007; Geffner et al., 1975).

Out of the two selected doses, CNet 600 had shown significant thyrotropic activity via raising FT₃ levels and reducing TSH levels. From previous studies, it was concluded that stimulation of Deiodinases (DIOs) reduces secretion of TSH (Baur et al. 2000). However, administration of CNet 400 raised the FT₃, with concomitant increase in TSH, which indicate that the lower dose, i.e. CNet 400 lack the stimulatory effect on DIO1 mediated T₄ to T₃ conversion inhibited by PTU. Similar study on <i>Moringa oleifera</i> and <i>Aegle marmelos</i>, also showed the extract raised the T₄ levels but decreased T₃ levels in female mice suggesting the inhibitory effect of extract on peripheral conversion of T₄ to T₃ (Tahiliani and Kar, 1999). However, not determining the T₃ levels was limitation of our study.

An earlier study on lupeol and its ester lupeol linoleate, pentacyclic triterpenes derived from <i>C. nurvula</i> bark reduced the lipid abnormalities and hypercholesterolemia in rats fed with high cholesterol diet (Sudhahar et al. 2006). On the similar grounds in our study, both CNet 400 and CNet 600 containing triterpenes, shown reduction in cholesterol levels in comparison with LT₃ treated group which can control CHO levels on long term therapy, along with dietary restriction and with use of hypolipidemic agents only (O’Brein et al., 1993; Tanis et al., 1996) and vehicle treated hypothyroid group. Mechanistically also, TH have been found to have crosstalk with other nuclear receptors including farnesoid X receptor (FXR), liver X receptor (LXR), peroxisome proliferator-activated receptor (PPAR), and PPARγ coactivator (PGC-1α) that regulate cholesterol levels indirectly (Oppenheimer et al., 1991; Liu and Brent, 2010).

CONCLUSION

The results of the present study indicates that in comparison with the standard treatment, i.e. levothyroxine, CNet 600 mg/kg, showed stimulatory effects on the thyroid gland as evident from raised FT₃ levels and decreased TSH levels alongwith significant reduction in cholesterol levels, suggesting its beneficial role in treating hypothyroidism, whereas, less marked and erratic response was shown by CNet 400 mg/kg.

ACKNOWLEDGEMENT

This study was the part of M. Pharmacy (Pharmacology) thesis project. Authors greatly appreciate the support of all technical and non-technical staff of CT Institute of Pharmaceutical Sciences for providing their resources, facilities and guidance in completion of the study.

REFERENCES

Botella-Carretero JI, Gal JM, Caballero C, Sancho J, Escobar-Morreale HF. Quality of life and psychometric functionality in patients with differentiated thyroid carcinoma. Endocrine-related cancer 2003; 10 (4): 601-10

Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI et al. The American Association of Clinical Endocrinologists and American Thyroid Association Taskforce on Hypothyroidism in Adults KA. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Groups</th>
<th>Day</th>
<th>PTU+VEH</th>
<th>PTU+LT<sub>3</sub></th>
<th>PTU+CNet 400</th>
<th>PTU+CNet 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT<sub>3</sub> (ng/dl)</td>
<td>15</td>
<td>0.94±0.119</td>
<td>1.63±0.379</td>
<td>1.35±0.142</td>
<td>1.22±0.136</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.946±0.055</td>
<td>2.34±0.626**</td>
<td>3.25±0.411***</td>
<td>3.709±0.204###</td>
<td></td>
</tr>
<tr>
<td>TSH (μIU/ml)</td>
<td>15</td>
<td>1.25±0.387</td>
<td>0.51±0.145</td>
<td>0.747±0.230</td>
<td>1.31±0.392</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.168±0.353</td>
<td>0.45±0.113</td>
<td>1.24±0.368#</td>
<td>0.299±0.124*</td>
<td></td>
</tr>
<tr>
<td>CHO (mg/dl)</td>
<td>15</td>
<td>33.67±4.58</td>
<td>34.34±0.435</td>
<td>40.13±2.763</td>
<td>60.03±2.556</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>68.16±2.066</td>
<td>60.11±0.177</td>
<td>36.58±2.116###</td>
<td>29.58±2.251###</td>
<td></td>
</tr>
</tbody>
</table>

The results are expressed as mean ± SEM, (n=6). Where ***P<0.001, **P<0.01 and *P<0.05 (PTU+VEH as control at Day 30_b) and **P<0.001, *P<0.01 and *P<0.05 (PTU+LT₃ as control at Day 30_b), using Two-way RM ANOVA followed by a Bonferroni post test.
Clinical Endocrinologists and the American Thyroid Association. Thyroid 2012; 22 (12): 1200-35

Hussain M, Baksh H, Aziz A, Majeed A, Khan IA, Mujeeb A, Farooq U. Comparative invitro study of antimicrobial activities of flower - plants inhibit thyroid hormone receptors turnover - proliferative and apoptosis inducing property.

Jonklaas J, Davidson B, Bhagat S, Soldin SJ. Triiodothyronine levels in athyreotic individuals during levothyroxine therapy. Jama 2008; 299 (7): 769-77

Liu YY, Brent GA. Thyroid hormone crosstalk with nuclear receptor signaling in metabolic regulation. Trends Endocrinol Metab, 2010; 21: 166-73

Moriyama K, Tagami T, Usui T, Naruse M, Nambu T, Hataya Y et al. Antithyroid drugs inhibit thyroid hormone receptor-mediated transcription. The Journal of Clinical Endocrinology & Metabolism 2007; 92 (3):1066-72

Panda S, Kar A. Guggulu (Commiphora mukul) potentially ameliorates hypothyroidism in Female Mice. Phytotherapy Research, 2005; 19: 78-80

Razvi S, Weaver JU, Butler TJ, Pearce SH. Levothyroxine treatment of subclinical hypothyroidism, fatal and nonfatal cardiovascular events, and mortality. Archives of internal medicine 2012; 172 (10): 811-7

Ross DS. Bone density is not reduced during the short-term administration of levothyroxine to postmenopausal women with subclinical hypothyroidism: a randomized, prospective study. The American journal of medicine 1993; 95 (4): 385-8

Sudhahar V, Kumar SA, Varalakshmi P. Role of lupeol and lupeol linoleate on lipemic oxidative stress in experimental hypercholesterolemia. Lifescience, 2006; 78; 1329-35

Tahiliani P, Kar A. Role of Moringa oleifera leaf extract in the regulation of thyroid hormone status in adult male and female rats. Pharmacological research. 1999; 41(3): 319-23

How to cite this article: