Journal of Applied Pharmaceutical Science Vol. 7 (08), pp. 048-061, August, 2017 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2017.70808 ISSN 2231-3354 CC) BY-NC-SA

Evaluation of *Cardiospermum halicacabum* leaf compounds against human DihydroOrotate Dehydrogenase: a target for Rheumatoid Arthritis using Structure based Drug Designing

Priya Swaminathan, Lilly Saleena^{*}

Department of Biotechnology, SRM University, Chennai, India.

ARTICLE INFO

Article history: Received on: 12/04/2017 Accepted on: 03/06/2017 Available online: 30/08/2017

Key words: Rheumatoid arthritis, *C. halicacabum*, Dihydroorotate Dehydrogenase, Screening validation .

ABSTRACT

Rheumatoid arthritis [RA] is a disorder that makes the abnormal immune cells to assail the joints in the body leading to pannus formation and destruction of the synovium. Human DiHydroOrotate DeHydrogenase [hDHODH] inhibition is effective in controlling the proliferation of the abnormal immune cells. Though technology has benefitted science and medicine in many ways, certain indigenous cures are still considered a boom for various diseases. *C. halicacabum* an Indian medicinal plant is widely used as a home remedy for arthritis pain. The novelty of this study relies on the extensive validations performed to obtain robustness of the results. An E-pharmacophore model based on A771726- an experimentally resolved inhibitor of hDHODH was screened against the phytocompounds in the leaf of *C. halicacabum*. These compounds were docked and further validated statistical and ranking methods. Further, flexible docking was performed to understand the optimal pose of the docked structures of Apigenin 70-glucornide and Luteolin 70-glucornide. These optimal poses were then simulated for 10 ns in a SPC environment which gave a very low RMSD value of 1.5 Å. These results were comparable with the known inhibitor of hDHODH. Thus this study helps to understand and evaluate the different probable inhibitors of hDHODH from *C.halicacabum* and suggests a mode of action for phytochemicals of *C. halicacabum* against RA.

INTRODUCTION

Human DiHydroOrotate DeHydrogenase [hDHODH] is a well studied target for Rheumatoid arthritis [RA] and various other proliferative diseases like multiple sclerosis, cancer and parasitic infections (Munier-Lehmann *et al.*, 2013). It plays a role in *denovo* pyrimidine synthesis for faster proliferation of T cells. The proliferation of T cells is limited when hDHODH is inhibited. Thus the strategy of controlling proliferation by inhibiting hDHODH leads to abatement of symptoms hence leading to decline in the destruction caused by hyperactive immune cells (Fox *et al.*, 1999). Leflunomide is a prodrug known

Email: saleena.m @ ktr.srmuniv.ac.in

to inhibit hDHODH. The drug is effective with an IC50 value of 600nm square but prolonged usage generally causes hepatic disorders that are classified as DILI (Drug Induced Liver Injury) (DeLeve and Kaplowitz, 2013). Thus the search for various alternatives that can be effective inhibitors as well as non toxic has been carried out in a number of studies like the fragment guided selection of hydroxycoumarins, anthranilic acids and fenamic acids based on the types of aminoacids present in the inhibitor active site (Fritzson et al., 2010). Another paper, describes Ascofuranone and Ascochlorin metabolites from a fungal strain show moderately good inhibitory action against hDHODH (Qi et al., 2009). Preceding this work, we have used a database of 1000 natural compounds to evaluate good inhibitors of hDHODH using novel E-pharmacophore validation techniques (Swaminathan et al., 2014). Here, our study deals with validating small molecules from traditionally used medicinal plant like Cadiospermum halicacabum as good inhibitors of hDHODH using new validation techniques.

^{*} Corresponding Author

The validation is a multi course process where multiple statistical and repetitive tests are done to evaluate the confidence of the results obtained. The reproducible results are further crossdocked to evaluate the ligand using flexible hDHODH receptors from RCSB PDB. The optimal poses of the lead-like compounds were shortlisted. These poses are taken as the base structure for molecular dynamics to understand the behavior of the suggested lead-like phytocompounds against hDHODH in a simulated soluble environment.

The phytomolecules used in the study are the active ingredients of Indian medicinal plant *Cardiospermum* halicacabum. C. halicacabum has been used by many traditional medicinal systems as treatment of RA (Ganesan *et al.*, 2011). Pharmacognasy properties of *C. halicacabum* as a crude drug have been studied and reported earlier (Zalke *et al*, 2013). In vitro studies have shown ethanolic crude extract of the leaf of *C. halicacabum* inhibit nitric oxide synthase and TNF- α (Sheeba and Asha, 2009).

Other studies have been used to prove its antiinflammatory nature (Babu and Krishnakumari, 2005; Sadique et al., 1987). Pharmacological validation of this plant revealed that the plant leaf compounds are safe and are not toxic up to 40g/kg in murine models (Pillai and Santhakumari, 1981). In other studies, the plant has been evaluated for its antimicrobial characteristics (Jeyadevi et al., 2012; Raza, 2013) as well as vectoricidal effects for mosquito borne diseases (Govindarajan and Sivakumar, 2012). Computational biology is a way to evaluate a probable inhibitor in a faster and definite manner in a workstation before experimentally determining the same (Marrone et al., 1997; Jorgensen, 2004). Virtual screening and molecular docking validation is considered to be a good way to evaluate the significance of the result. The commonly used method for validation is ROC curve (Vyas, 2008).Reproducing the same results in the experimental laboratory seems to be the biggest challenge in an in silico study (Kirchmair et al., 2015). Thus, this study helps to examine the results with respect to different aspects such as ranking, robustness, significance and pose difference to come forward with the best poses of the top hits of compounds from C. halicacabum.

This study would provide a comprehensive base for in depth analysis and search for alternative compounds that inhibit hDHODH and to explore an alternative mechanism of action for *C. halicacabum* inhibitors against hDHODH. The study provides a summative proof of concept for the use of *C. halicacabum* as a treatment for RA.

MATERIALS AND METHODS

Collection of SDF formats of Phytomolecules of *C. halicacabum* through Literature

The compounds to be interrogated for their mechanism in Rheumatoid arthritis against the target human DHODH was collected through literature search (Veeramani *et al.*, 2012; Jeyadevi *et al.*, 2012).

Protein Preparation

The protein preparation wizard workflow of Schrodinger 9.2v for the 3D-structures of proteins was implemented by adding hydrogens, assigning missing atoms and bond types, removing water molecules, and a refinement by completing missing side chains. The protein then was energy minimized using OPLS force field (Madhavi Sastry *et al.*, 2013).

E-Pharmacophore Screening

Using the Advanced Search Tab in Schrodinger Maestro Suite, the E-pharmacophore was imported against the 19 compounds of *Cardiospermum halicacabum*. The screening resulted in finding matches that are similar to the ADHR features in the E-Pharmacophore.

Ligand Preparation

Ligands were prepared using Ligprep program of Maestro 9.2v (Madhavi Sastry *et al.*, 2013). Each ligand was assigned an appropriate bond order and minimized using OPLS 2005 force field and ionized at pH 7.

Receptor Grid Generation

The receptor grid file was generated using receptor grid generation option of Schrodinger 9.2v which represents physical properties of a volume of the receptor (specifically the active site) that are explored while performing docking (Madhavi Sastry *et al.*, 2013).The grid is specified based on the ligand binding site in the co-crystal ligand.

Validation Methods for Docking Programs

Docking methods were evaluated using specificity, reproducibility using different programs and Receiver operating curves (ROC) plot. Docking using the decoy set of compounds that are mixed with the test compounds of a specific target. The ranking is used to plot receiver operating characteristic curves. ROC curves plot the sensitivity (Se) of a given docking / scoring combination against the specificity (Sp). ROC curve is a plot of true-positive versus false-positive rates for all compounds. The area under the ROC (AU-ROC) curve is the probability of active compounds being ranked earlier than decoy compounds. A ROC curve that passes through the upper left corner (100% sensitivity and 100% specificity) has perfect discrimination (no overlap in the two distributions). Therefore, the closer the ROC curve is to the upper left corner, the higher the overall accuracy of the test (Triballeau *et al.*, 2005).

Molecular Docking Using Glide XP (Extra Precision)

Molecular docking was performed for the prepared ligands using glide extra precision (XP) of Maestro 9.2v. This algorithm recognizes good hydrophobic, hydrogen-bonding, and metal-ligation interactions, and punishes steric clashes. Glide Score is based on ChemScore (Eldridge *et al.*, 1997), but includes a steric-clash term, adds buried polar terms devised by Schrödinger to penalize electrostatic mismatches, and has modifications to other terms.

Molecular Docking Using Ligand Fit

The LigandFit docking procedure in Accelyrs discovery studio consists of: cavity detection for active site; and docking ligands to a selected site. Cavity detection, involves the use of a flood-filling algorithm. Its scoring function has been derived to predict binding affinities or to prioritize ligands relative to one another (Venkatachalam et al., 2003).

Molecular Docking using iGEMDOCK

iGEMDOCK v2.1 - A Graphical Environment for Pharmacological Interactions Recognizing and Virtual Screening[VS] is a docking tool for short listing pro-interactions like hydrogen bonds, electrostatic interactions and Van der Waals forces between the ligand and the receptor.

The energy value calculated by iGEMDOCK is the sum of binding energy, binding site pharmacophores energy and penalty of suboptimal ligand (Hsu et al., 2011). BindingDB

It is a web-accessible database of experimental IC50 of protein considered to be drug-targets with small, drug-like molecules (Nicola et al., 2012). BindingDB contains 1,116,226 binding data, for 6,974 protein targets and 478,572 small molecules. It is expected that the enhanced access to data provided by this resource will facilitate drug-discovery and the development of predictive computer models of binding.

Crossdocking

To study the specificity of the receptors and ligands, when the receptors are all the same protein but in different conformations can yield valuable information about the effects of induced fit upon binding (Totrov and Abagyan, 2008). Glide Cross Docking (XGLIDE) automates cross docking calculations with Glide. The flexibility of the receptor is taken into account for ligand specificity. It is a practical method where experimentally derived structures are used to improve docking predictions

Free Energy Calculation using Prime MM/GBSA

Molecular mechanics with generalized Born and surface area solvation (MM/GBSA) is a popular approach performed using Prime option of Schroedinger's Maestro suite. MM/GBSA quantifies the difference in energy between the free and the complex state of both the ligand and the protein after energy minimization. The energies of the complex were calculated using OPLS 2005 (optimized potentials for liquid simulations force field) and generalized Born and surface area solvation model. This program is used to predict the strain energy and free energy of binding for each ligand (Du et al., 2011).

Dynamics Simulation

A solvated system was subjected to energy minimization using steepest descent algorithm. MD simulations on Desmond first relax and minimize the receptor alone or the complex. Further MD simulations were carried out for desired period of time at a constant temperature of 300K and constant pressure of 1 atm with a time step of 2fs by means of Nose-Hoover thermostat method. Molecular dynamics is a complement experiment to explain a molecular mechanism as well as describe a system at equilibrium (Karplus and McCammon, 2002). The energy and trajectory atomic coordinates for all simulations were recorded at every 1.2 ps and 4.8 ps.

RESULTS AND DISCUSSION

Phytochemicals of C. halicacabum

Cardiospermum halicacabum is an uncultivated food crop, widely distributed in India and consumed as green leafy vegetable. The anti-inflammatory activity of ethanol extract of C. halicacabum leaves against carrageenan-induced rat paw edema has already been observed experimentally in rats (Huang et al., 2011). The ethanol extract of the C. halicacabum suppresses the production of TNF-alpha and nitric oxide in human peripheral blood mononuclear cells (Venkatesh and Krishnakumari, 2009). Jeyadevi et al, (2012) worked on the ethanolic extract for its chemical constituents using GC-MS and FT-IR. This yielded in peaks for flavonoids and phenolic acids. Further literature searching resulted in some other compounds like cardiospermin, Calycosin, Rutin, Protocatechaldehyde, Quebrachitol, Phloridzin, Prunin and Ferulic acid (Veeramani et al., 2012; Jeyadevi et al., 2012). In total 19 compounds were shortlisted from the ethanolic leaf extract of C. halicacabum. Most of the compounds were flavanoids or alkaloids.

E-Pharmacophore Screening

A validated E-Pharmacophore for hDHODH published in a previously done work (Swaminathan et al., 2014) was used to screen the 19 compounds. E- Pharmacophore or structure based pharmacophore is a scaffold of important features and their distances that specify the efficiency of an inhibitor. The validated E-Pharmacophore had 4 features viz. an Acceptor, a Donor, a hydrophobic group and a Ring structure. All these features correspond to the hydrogen bonds and hydrophobics interactions obtained in the X-ray Crystallographic Structure of hDHODH (1D3H) (Swaminathan et al., 2014). The essential features represented in the E-pharmacophore ADHR at specific distances was screened against the 19 compounds to identify hits that have inhibitor like features. Fitness score measures the degree of equivalence between the ligand conformer and the hypothesis (Sotriffer, 2011). The E-pharmacophore which was based on A771726 - a known potent inhibitor of hDHODH was screened against the 19 compounds of C. halicacabum to sought out structurally similar compounds in the leaf that have similar features like the inhibitor. The E-pharmacophore with essential hDHODH inhibitory features was further taken for database screening to identify the novel molecules. Table 1 lists the 8 compounds that showed fitness score equal or greater than 1.The

highest score obtained was for coniferaldehyde with 1.78 while 7 other compounds were equal to or higher than 1.3 fitness score.

 Table 1: Fitness Scores of compounds screened with E-Pharmacophore.

Compounds	Fitness score
Coniferaldehyde	1.78
Quercetin	1.71
Chryseriol	1.67
Prunin	1.65
Apigenin	1.62
Calycosin	1.53
Caftaric acid	1.52
Luteolin7O- Glucornide	1.32

Table 1 suggests that coniferaldehyde and quercetin along with Chryseriol have similar features at distances matching with that of the pharmacophore hypothesis. All the hits were superimposed on the E-pharmacophore to manually inspect the degree of similarity (Figure 1). Thus compounds that are top hits in pharmacophore screening may dock with higher score. It is also accomplished that all of the 8 compounds obtained have features that match at various degrees to the known inhibitor of human DHODH.

Fig. 1: Superimposition of the different hits after screening with the E-pharmacophore (White), Coniferaldehyde(green), Quercetin(cyan), apigenin (orange), calycosin(magenta) and caftaric acid(purple).

Glide Docking

Although only fewer hits were screened in the previous step, all 19 phytocompounds were docked to identify the binding mode of the active phytoconstituents with the inhibitor active site of human DHODH receptor. The glide XP G-score ranged from-11.28 Kcal/mol to -8.22 Kcal/mol. The hit compounds which possess high glide score compared with the known inhibitor A771726 (Glide XP G-score= -8.15 Kcal/mol) was considered as good hits (**Table 2**).

Out of 19 compounds, only ten compounds showed XP G-score greater than A771726. The XP G-score is generated using scoring functions that consider the bonded and non-bonded interactions as well as penalties for rotatable bonds and polar group interactions in active site. These hit compounds were examined for their bonded and non bonded interactions with human DHODH. In an earlier study done to find the most effective inhibitor against human DHODH, it was discussed that an ideal human DHODH inhibitor must possess Van der Waals, hydrophobic and negatively charged interactions with the receptor.

The binding mode of the identified hits was inferred by studying the essential bonded and non-bonded interactions. Our identified hits show good electrostatic (XP electro) and hydrophobic interactions (XP PhobEn) with the receptor DHODH. A comparison of docking poses for known and identified hits suggests that the hits show almost similar binding mode with the active site residues of DHODH (Pro52, Ala55, Thr63, Leu67, Arg136 and Tyr356).

Table 2: Docking results for the phytomolecules against human DHODH using GlideXP.

S.No	Compound	Glide XP Score	Glide Energy	Interactions	
5.110	Name	(Kcal/mol)	(Kcal/mol)	Interactions	
1.	Caftaric Acid	-11.28	-45.16	Ser215,Asn284,	
				Asn212,	
				Lys100,Ser120	
2.	Luteolin7O-	-10.85	-55.36	Tyr356, Pro52	
	glucornide				
3.	Phloridzin	-10.44	-46.43	Tyr 38	
4.	Prunin	-10.10	-37.03	Pro52	
5.	Chlorogenic acid	-9.84	-50.02	Pro52(2)	
6.	Chryseriol	-9.18	-39.47	-	
7.	Calycosin	-9.05	-37.92	Leu359	
8.	Apigenin	-8.69	-37.61	Ala55	
9.	Apigenin7O-	-8.22	-57.87	Pro52	
	glucornide				
10.	A771726	-8.15	-41.02	Tyr356,Arg136	

Binding Mode of Caftaric Acid

Caftaric acid, which was one of the hits in the Epharmacophore screening, had the highest Glide XP Gscore of -11.22 Kcal/mol among other hits. This compound revealed a network of hydrogen bonds with receptor residues like Ser215, Asn284, Asn212, Lys100 and Ser120. This compound donates a Hydrogen bond with side chain of Asn212(1.73 Å) and accepts 4 hydrogen bonds from the side chains of Ser215, Asn284, Lys100 and Ser120 at distances 2.02Å, 1.92Å, 1.74Å, 1.85Å respectively (Figure 2). However the binding mode is not in the same pocket as that of the known inhibitor site but farther away in a deeper pocket near substrate binding site of FMN. Thus, compared to A771726, caftaric acid binds in a region away from the known binding site and thus cannot be considered as a good hit among all the hits obtained as compared to the known inhibitor A771726. It has rich hydrophobic interactions with Tyr147, Val134, Tyr356 and Val143.

051

Fig. 3: Binding modes of A. Luteolin 7O-glucornide B. Phloridzin C. Prunin (green) Chlorogenic acid (black) and Apigenin 7O-glucornide (blue) D. Chryseriol (pink), Calycosin (purple) and Apigenin (black)

Binding Mode of Luteolin-70 Glucornide

Rhamnazin, a flavonol, scores -10.70 Kcal/Mol and donates a hydrogen bond to a main chain of Pro52 backbone at the carboxyl oxygen (1.71 Å) and donates another hydrogen to the side chain of Tyr356(2.02Å).Its XP vdW and XP PhobEn are -0.69 and -0.17 respectively. Its hydrophobic score is much better than the other molecules compared. It makes hydrophobic interactions with Met43, Leu46, Pro52, Ala55, Phe62, Phe98, Pro364, Tyr356 and Leu359. The binding mode is quiet similar to the binding mode of A771726 with Tyr356 (2.91 Å). The hydrophobic interactions of this molecule contribute to the high Gscore obtained and indicates a possible effective inhibitor activity of the compound against human DHODH (**Figure 3A**).

Binding Mode of Phloridzin

Phloridzin is a flavonol that binds with a Gscore of -10.44Kcal/mol and forms a hydrogen bond with Tyr38 (1.88 Å).The side chain of Tyr38 accepts hydrogen atoms from the Hydroxyl group present in the dihydroxyphenyl ring of phloridzin. The electrostatic interaction contributes to increase in the XP Electro contribution to -0.25. The XP Vdw contribution is about -43.07 with hydrophobic bonds formed with Tyr38, Leu42, Met43, Leu46,Pro52 Ala55, Ala59, Leu68, Val134, Leu359 and Pro364 .Tyr38 is in the same pocket as that of Tyr356 thus the binding mode is comparable with A771726 (**Figure 3B**).

Binding Mode of Prunin, Chlorogenic Acid and Apigenin 70 -Glucornide

Prunin, chlorogenic acid and apigenin 7Oglucornide all interact with the amino acid Pro52 forming bonds at an average distance of hydroxyl group at 2.1Å. Chlorogenic acid forms two bonds with Pro52.The high XPGscore for prunn is accounted by the high Vdw interaction score of-32.96 Kcal/mol which is comparable with that of A771726 having a score of -31.94 Kcal /mol. Apigenin 7oglucornide shows similar XP PhobEn of -2.82 with A771726 having XPPhoben score of -2.00. The Hydrophobic interactions with Met43, Leu46, Ala55, Ala59, Phe62 and Leu67 and Tyr356 and Leu364 were common for the three molecules compared (**Figure 3C**). Chlorogenic acid had high XP Phoben and XP vdw compared apigenin 7O glucornide but lower than Prunin.

Binding Mode of Chryseriol, Calycosin and Apigenin

Among the three, Chryseriol has the highest XP PhobEn contribution compared to the others. They had a glide XPGscore of -9.18, -9.05 and -8.69 Kcal/mol. the amino acid interactions forming Hydrogen bonds were with Ala55 and Leu359 (**Figure 3D**). The hydrophobic interactions were with the amino acids Met43, Leu46, Ala55, Ala59, Phe62 and Leu67 and Tyr356 and Leu364. The molecules are consecutive in the list of glide XP results and only differ majorly in their glide evdw score of -37.37, -33.33 and -34.43 respectively. Based on the binding mode

analysis it is clear that all the hits obtained are comparable to the known inhibitor and its significance is maintained by binding in an equivalent manner as the known inhibitor molecule. The exception in this is Caftaric acid which has a good glide score and energy but the Binding pocket is a little deeper than the inhibitor binding site. To evaluate if caftaric acid is a significant hit, docking experiment is validated by using three validation methods.

Validation of the Docking Results

The docking results significance can be validated by many methods. The validation aims to corroborate the robustness of the results with its reliability. The results will throw light on the factors that affect a docking experiment, like the docking algorithm, the use of large data set of decoys and performance of the docking tool with known and unknown active molecules.

ROC Plot Analysis

Receiver operator Characteristic [ROC] curve is done to justify the sensitivity and the specificity of the receptor towards the phytocompounds. Docking program was validated using ROC which describes the ability of docking method to avoid false positives and false negatives. The docking experiment is modified to accommodate the 19 compounds of C. halicacabum and 300 compounds from the Asinex decoy set in the ratio 1:15. The decoys have been used traditionally to evaluate the sensitivity of a pharmacophore while in other studies have been used for evaluating the specificity of a receptor. Enrichment was calculated based on how well the candidate or annotated compounds were retrieved from the decoy database. Here the ROC curve obtained had an Area under Curve (AUC) value of 0.72 which is significant according to literature survey (Figure 4). 79% of the actives compounds (19 compounds) were retrieved as hits. The top four hits of Glide XP were in correlation to the top four hits of the decoy set infused actives docking.

Fig. 4: Receiver Operator characteristic curve against decoys

Docking with Several Different Algorithms

The docking algorithm plays a humongous role in retrieving the true positives as results. Different algorithms were

used to check the robustness of the result obtained. Two docking algorithms were used for docking the 19 phytocompounds of *C. halicacabum* with the receptor 1D3H.

Docking In Accelrys Ligandfit Tool

The docking algorithm of Ligandfit is different from GlideXP as it searches for shape complementarities of the ligand with the receptor rather than hierarchical filtering of ligand poses in the receptor pocket. This amounts to searching of ligand pose in all bumps or openings in the receptor structure. Ligandfit was able to define the receptor to have 3 binding pockets. When the 19 ligands along with A771726 were probed in 3 different pockets, good dockscore and PLP score were obtained for the different ligands only in the inhibitor binding site.

 Table 3 shows 7 hits having better dockscore compared to A771726. The dockscore ranges from 73.01 to 55.78 Kcal/ mol.

 Table 3: Docking results for the phytomolecules against human DHODH using

 Accelrys Ligandfit.

Compound Name	Dockscore Kcal/mol	PLP1 Kcal/mol	PMF Kcal/mol	Interactions
luteolin7O- glucornide	73.01	-121.77	-122.38	Arg136, Tyr38, Pro52, Gln47
apigenin7O- glucornide	70.90	-114.15	-116.5	Pro364, Tyr38
prunin	67.48	-117.48	-100.99	Arg136
chlorogenic acid	65.06	-99.3	-80.57	Arg136, Pro 52, Gln47
chryseriol	63.01	-102.1	-72.55	Arg136, Tyr356,Pro 52, -
phloridzin	59.35	-104.28	-88.9	Thr63, Met43
caftaric acid	57.52	-88.22	-60.35	Arg136
A771726	55.78	-102.7	-67.4	Tyr356, Arg136

Luteolin 7O- glucornide was the top hit here compared to caftaric acid in Glide XP. The type of interactions made by Luteolin 7O glucornide is the similar with Pro52. The bond distance is comparable. All the other hits including caftaric acid bound in the same pocket as that of the inhibitor Leflunomide. **Figure 5** gives the binding pose of the top hit.

The remaining two predicted binding sites gave "no poses docked". This means nil results were obtained.

Fig. 5: Docked pose of Luteolin 7O-glucornide (light green) with hDHODH as predicted by Accelrys Ligand Fit tool.

Docking with the iGEMDOCK Tool

iGEMDOCK tool uses evolutionary steps of genetic algorithm to find docked poses of ligands. The poses generated are survivors of goodness of fit score. The docking results of the 19 phytocompounds with the human DHODH receptor gave 6 hits with Luteolin 7O-glucornide as the best hit followed by apigenin 7O glucornide. The hits generated were all better energy value compared to the known inhibitor A771726. The evolutionary based algorithms tends to select those hits that are better among a population of hits or poses that have better energy than the earlier hits obtained. This iterative process only ceases when no better pose with better energy can be generated.

 Table 4: Docking results for the phytomolecules against human DHODH using iGEMDOCK tool.

Compound Name	Energy Kcal/mol	Hydrogen bond Interactions	Electrostatic Interactions	Vaanderwaals Interactions
Luteolin7O- glucornide	-153.22	Arg136,Tyr 38,Pro52, Gln47, His56,Thr6 3, Tyr356	-	Ala59, Met43, His56, Ala55, Phe62, Phe98, Leu359, Thr360, Pro364
Apigenin7O- glucornide	-147.00	Arg136,Tyr 38,Pro52,Gl n47,His56, Tyr356	Arg136	Pro364, Tyr38, Pro52, Ala55, His56, Ala59, Phe62, Phe98, Leu359,Thr360
Phloridzin	-141.52	Arg136,Pro 52, Gln47, Ala59, Leu68,	-	Pro52, Ala55, His56, Ala59, Phe62, Arg136, Tyr356,Leu359 Thr360 Pro364
prunin	-141.10	Arg136,Thr 63, Tyr38	-	Ala59, Met43, His56, Ala55, Phe62, Phe98, Leu359,Thr360 Pro364, Tyr38, Arg136
chlorogenic acid	-138.50	Arg136,Tyr 147,Thr63, His56, Tyr356	-	Arg136,Tyr356 ,Pro52,Ala55,, His56,Phe98, Val134,Leu359 ,Thr360
caftaric acid	-124.09	Gln47,Thr6 3,Arg136, Tyr356, Pro364	Arg136	Gln47,Pro52, Ala55,His56,Al a59, Phe98, Arg136,Tyr356 Leu359,Thr360
A771726	-123.8	Tyr356, Arg136	-	Gln47,Pro52, Ala55,His56,Al a59,Phe98,Arg 136,Tyr356, Leu359,Thr360 , Pro364

Table 4 summarizes the iGEMDOCK result in such a way that it gives details of the hits in the format of Energy and the nonbonded interactions like hydrogen bonds, Van der Waals interactions and electrostatic interactions. The energy score ranged from -153.22 to -123.8 Kcal/mol. Luteolin 7O-glucornide and

Apigenin 70- glucornide were the top two hits. All the top hits had similar interaction in the inhibitor site. **Figure 6** depicts the binding pose for Luteolin 70-glucornide as predicted by iGEMDOCK. It shows Hydrogen bonds as dashed yellow lines with Arg136, Tyr38, Pro52, Gln47, His56 and Tyr356.

Fig. 6: Docked pose of top hit (luteolin7O–glucornide) as predicted by iGEMDOCK.

Validation using Curated BindingDB

BindingDB is a database that contains binding affinity information of different receptors for different ligands in different organisms. The database was curated for small molecules that inhibit human DHODH specifically and which neither binds with other species DHODH receptor nor with other protein drug target receptors. Such potent, crosschecked and specific small molecules were collected and made into a phase database file as curated BindingDB for human DHODH. A total of 229 molecules were found that were very specific to human DHODH with high IC50 value. These inhibitors along with the nineteen phytomolecules were docked with human DHODH to figure out where the phytomolecules rank themselves compared to known, potent, specific inhibitors.333 poses were generated where caftaric acid and Luteolin 7O-glucornide and appeared among the top 25 of the hits. A771726 among other known inhibitors was ranked 155 with a XP GScore of -8.32 Kcal/mol. Caftaric acid and Luteolin 70 glucornide had XP Gscore of -11.28 and -10.85 Kcal/mol which is significantly higher. However the binding pocket differed for caftaric acid in a deeper tunnel farther away from the inhibitor binding site .Other compounds which were ranked well than A771726 were phloridzin, prunin, chlorogenic acid, chryseriol, calycosin and apigenin. Their XP Gscore and binding site were analogous with A771726.

The **Table 5** depicts the hits when sorted with glide energy. Table depicts the known compounds with its IC50 value while the *C. halicacabum* compounds do not have a known IC50 value against the target.

Table 5: Glide XP score of Binding DB based known inhibitors against hDHODH.

S. No	TITLE	ENZYMOLOGIC IC50 (nM)	GLIDE ENERGY Kcal/mol
1	apigenin7O- glucornide	-	-57.87
2	luteolin7O- glucornide	-	-55.36
3	CHEMBL370008	2000	-51.65
4	CHEMBL2177115	1270	-51.16
5	CHEMBL154336	370	-50.71
6	US8536165	190	-50.09
7	chlorogenic acid	-	-50.02
8	Phloridzin	-	-49.66
9	CHEMBL155548	290	-49.43
10	CHEMBL1076869	3300	-49.38
11	CHEMBL358435	8400	-49.35
12	CHEMBL154908	2900	-49.20
13	CHEMBL193365	11	-49.11
14	CHEMBL1929439	27	-48.95
15	Biphenyl-4-lcarbamoyl	44	-48.61
	Thiophene Analog 5		
16	Biphenyl-4-	1	-48.42
	ylcarbamoyl Thiophene		
	Analog 8		

Fig. 7: Ligand Interaction Diagram for Luteolin 7O- glucornide and Apigenin 7O-glucornide.

Glide energy is the energy associated with binding of ligand with receptor. When the results were sorted according to Glide energy it was seen that Apigenin 7O- glucornide and Luteolin 7O- glucornide were the best hits. More negative energy indicates better binding. Thus the results suggest that compared to already known inhibitors the results obtained by docking with *C. halicacabum* phytomolecules were very significant. **Figure 7** gives the Ligand Interaction Diagram description of Luteolin 7O-glucornide and Apigenin 7O-glucornide when docked with several known BindingDB inhibitors. It was seen that the two structures are chemically similar to each other except for a hydroxyl group missing in apigenin 7 O-glucornide. It was also observed that their binding mode is similar with hydrogen bonds at Pro52 of hDHODH.

Cross Docking

Regular molecular docking considers the conformation of the target receptor to be rigid and the ligand to be flexible. This rigidity can account for the false positivity of the docking results. Thus a method called CROSS docking allows docking of all the different conformations of DHODH present in PDB with the 19 compounds. Cross docking tends to retrieve significant top hits with different conformations of the receptor to ultimately eliminate false positives. It's a class of flexible docking with receptor and ligand flexibility that justifies the docking poses of the ligand with different conformations of the receptor.

There were 22 different other receptors of DHODH for humans at the time of doing the experiment having a resolution ranging from 1.24Å to 3.00Å.

The **Figure 8** gives a glimpse of all the 22 PDB structures of human DHODH superimposed on each other. The raspberry colored residue is ARG136 and cyan coloured residue is TYR356- part of the inhibitor binding site.

Fig. 8: Superimposed image of 22 PDB structures of hDHODH.

The cross docking results **Table 6** depicts the best 3 hits of each receptor of human DHODH are displayed as the result table of cross docking. Luteolin 7O-glucornide had the highest XP G-score of -15.913 Kcal/mol for the PDB structure 2BOM. For all the 22 cross docked results A771726 was lower than the top three hits. It was seen that all the resolutions from lowest to highest gave the same compounds as hits as from regular docking. Each hit was counted for the number of times it occurred as the first, second or the third hit for the different PDB id receptors.

PDD D Computing Value Keal/mod Interactions 200M Lacobin70-glacornide -13.978 -57.49 PT(032.01.N37.ARG136.THR360 201A Lacobin70-glacornide -12.231 -45.69 PR(032.01.N37.ARG136.THR360 201B Lacobin70-glacornide -13.824 -62.58 PHED.LEV.T.ARG136.THR360 201A Lacobin 70-glacornide -12.234 -66.28 PHED.LEV.T.ARG136.THR360 201B Lacobin 70-glacornide -12.234 -66.28 PHED.LEV.T.ARG136.THR360 201A Lacobin 70-glacornide -12.234 -66.28 PHED.LEV.T.ARG136 201A Lacobin 70-glacornide -11.302 -54.68 PHED.LEV.T.V.R.SARG136 201A Chiorogenic acid -10.705 -54.68 PHED.S.LEV.SARG136 201A Chiorogenic acid -10.705 -54.68 PHED.LEV.T.V.SARG136 201A Phenin -12.592 -47.084 PHED.S.LEV.SARG136 201A Phenin -12.593 -46.38 PHED.S.LEV.SARG136 201A Phenin -12.593 -46.38<		C 1 N	XP G-SCORE GLIDE ENERGY		Internetions	
200M Lucebarrolgenomide 15.978 57.419 TYR356.AKG156.TIRR360 PRH Lucebarrolgenomide 12.713 45.690 PR052.ARG136.TIRR360 PRH Lucebarrolgenomide 12.821 -62.943 PR052.ARG136.TIRR360 Premin -12.641 -62.943 PR052.ARG136.TIRR360 Premin -12.541 -64.945 PR052.ARG136.TIRR360 D13G Lucebarrolgenomide -12.547 -60.977 TYR35.ARG136.27 Promin -11.365 -51.671 ARG136.JEUG7 -60.978.57 Charogenic acid -11.323 -58.460 PR052.JUR37.TIR850 -60.878.57 Apigenin 70.glucomide -13.595 -46.383 PR052.LUR37.TIR850.ARG136 Lucebin 70.glucomide -13.494 -42.991 PR052.ARG136.TIR856.ARG136 Promin -12.592 -47.084 PR052.LUN37.TIR856.ARG136 Apigenin 70.glucomide -12.185 -60.261 PR052.ARG136.TIR856.ARG136 Promin -12.984 -90.597 ARG136.270 TIR856.ARG136.70 Promin -12.986 -	PRD ID	Compound Name	Kcal/mol	Kcal/mol	Interactions	
Apgein 10 ² gluconide -12.624 -42.849 PRO32_LINE, ARG 13.5 THR 360 2PRH Lateolar Do gluconide -12.840 -46.246 PHE62_LEUX, ARG 13.5 THR 360 2PRH Paroni -12.840 -52.849 PRES0_LRUE, ARG 13.5 THR 360 1D3G Apgeain 70 gluconide -12.540 -52.849 PRES0_LRUE, ARG 13.6 THR 360 1D3G Apgeain 70 gluconide -11.355 -54.649 PRES0_LRUE, ARG 13.6 THR 360 2BV Apgeain 70 gluconide -11.305 -54.649 PRO52_TERS1_EUX Chorogenic acid -00.766 -54.689 PRES0_LRUE, TRES6, ARG 13.6 2PRL Lateolar 70 gluconide -13.05 -60.231 PRES0_LRUE, TRES6, ARG 13.6 2PRL Lateolar 70 gluconide -12.592 -47.048 PRO52_LRUE, TRES6, ARG 13.6 2PRL Lateolar 70 gluconide -12.592 -47.048 PRO52_LRUE, TRES6, ARG 13.6 2PRL Lateolar 70 gluconide -12.592 -47.043 PRO52_LRUE, TRES6, ARG 13.6 2PRL Lateolar 70 gluconide -12.592 -47.043 PRO52_LRUE, TRES6, ARG 13.6 <td< td=""><td>2BOM</td><td>Luteolin7O-glucornide</td><td>-15.978</td><td>-57.419</td><td>TYR356.ARG136.THR360</td></td<>	2BOM	Luteolin7O-glucornide	-15.978	-57.419	TYR356.ARG136.THR360	
Primin 12.624 42.943 PR032_RCI1500 2PRH Lacolan 70-glacomide 15.821 46.364 PH032_RCI1506 (NL357 Paulin -12.500 -32.889 TYR55_RCI1636 (NL357 ID36 Latcolan 70-glacomide -12.647 40.206 TYR53_RCI136(A) Paulin -11.563 -51.610 MR516(LL107) MR516(LL107) D200 Aggenin 70-glacomide -11.207 -93.486 GM1771(NL83_LEU67) Latcolan 70-glacomide -10.766 -44.894 GM1771(NL83_LEU67) Latcolan 70-glacomide -13.595 +6.383 PR052_LU171(NL80_LL1239) Paulin 70-glacomide -13.163 -40.231 PR052_LU171(NL80_LL1239) Paulin 70-glacomide -13.995 +6.383 PR052_LU171(NL80_LL1239) Paulin 70-glacomide -13.995 +6.383 PR052_LU171(NL80_LL1239) Paulin -10.406 -79.985 PR052_LU171(NL80_LL1239) Paulin -10.208 -59.73 ARG136(PD12) Paulin -10.208 -59.73 ARG136(PD		Apigenin 70-glucornide	-12.773	-45 669	PRO52 GLN47 ARG136 THR360	
2PRH Jacobin 70 glucomide 1550 5246 PHF621 FUGX, ACI 35, TRR160 Apigein 70 glucomide 1250 5248 PTKS3, ACI 136, VAI 367 103G Lacobin 70 glucomide 1264 56497 TYKS3, ACI 136, VAI 367 103G Lacobin 70 glucomide 1133 34, 450 PTKS3, ACI 136, VAI 367 2BXY Apigein 70 glucomide 1133 34, 450 PTKS3, ACI 136, VAI 367 2BXY Apigein 70 glucomide 1109 94, 480 PTKS3, ACI 136, VAI 367 2BXY Apigein 70 glucomide 1209 94, 480 PTKS3, ACI 136, VAI 367 2PRL Lacobin 70 glucomide 12595 -66, 333 PTK23, ACI 136, VAI 367 2PW8 Lacobin 70 glucomide 1248 52, 331 PTK35, ARG 136, VAI 367 2PW7 Lacobin 70 glucomide 1248 52, 331 PTK35, ARG 136, ACI 136, VAI 367 2PFY Lacobin 70 glucomide 1248 52, 597 PTK35, ARG 136, PTK356, PTK 136, PTK		Prinin	-12.624	-62.943	PRO52, ARG136 THR360	
Domin 12,560 52,889 TYR355,ARC155,VAL367 1D3G Lucolin 70 gluconide 12,244 56,497 TYR35,ARC136 1D3G Lucolin 70 gluconide 12,354 56,467 TYR35,ARC136,VAL367 28XV Apgeint 70 gluconide 11,352 54,810 PRO5,TYR35,ARC136,VAL367 28XV Apgeint 70 gluconide 10,076 54,848 LUL4,LL45 2PRL Lucolin 70 gluconide 10,076 54,848 LUL4,LL45 2PRL Apgeint 70 gluconide 13,055 46,333 PPO52,LLM47,TIR8,QLEUS9 2PRI Lucolin 70 gluconide 12,592 47,084 PRO52,LRM37,ARC136 2PWI Lucolin 70 gluconide 12,543 52,731 GL/Y1,RR052,ARC136 2PWT Lucolin 70 gluconide 12,543 52,731 GL/Y1,RR052,ARC136 2PWT Lucolin 70 gluconide 12,543 52,731 GL/Y1,RR052,ARC136 2PW Lucolin 70 gluconide 12,553 53,113 PRO52,CLM47,ARC136 2PW Lucolin 70 gluconide 12,555 53,113 PRN52,AR	2PRH	Luteolin 70-slucornide	-15 821	-66 246	PHE62 LEU67 ARG136 THR360	
Apgenin 70-glucomide 12.247 -66.497 TYR83.Ref138 1D3G Latedin 70-glucomide 12.647 40.006 TYR83.Ref136 1D3G Latedin 70-glucomide -11.355 -51.671 ARG136.LU(07) 2BXY Apgenin 70-glucomide -10.766 -54.689 CHTV1TYR83.Ref136 2BXY Apgenin 70-glucomide -10.645 -46.488 LE1042.ALX35 2PRL Latedin 70-glucomide -10.545 -46.488 LE1042.ALX35 2PRL Latedin 70-glucomide -12.592 -47.084 PR052.ARG136 2WW8 Latedin 70-glucomide -12.515 -60.161 PR052.ARG136 2WW8 Latedin 70-glucomide -12.543 -52.731 GLN47.PR052.RG136 2FPT Latedin 70-glucomide -10.403 -47.083 PR052.ARG136 2FPT Latedin 70-glucomide -11.823 -50.797 PR052.RG136 2FPT Latedin 70-glucomide -12.555 -53.183 PR052.LU57.ARG136 2FPT Latedin 70-glucomide -12.555 -53.183 PR052.LU57.ARG1	21 101	Prunin	-12 560	-52 889	TYR 356 ARG136 VAL 367	
ID3G Larselin 70-glacornide 12.647 -01.206 TYESLARGUISC) Proma 11.332 -54.810 PK032_TYRS1 2BXV Apjenin 70-glacornide -11.332 -54.810 PK032_TYRS1 2BX Apjenin 70-glacornide -10.766 -54.689 GLN47_TYRS1_EUS0_ARG136 2BX Apjenin 70-glacornide -10.766 -54.689 GLN47_TYRS1_EUS0_ARG136 2PRL Lateolin 70-glacornide -13.595 -46.333 PR032_LLN47_TR1650_LBU139 2WV8 Lateolin 70-glacornide -13.595 -46.334 PR032_CLN47_TR1650_ARG136 2PRL Lateolin 70-glacornide -12.516 -60.261 PR032_CLN47_TR156_ARG136 2PT Lateolin 70-glacornide -12.608 -51.399 GLN47_ARG136 2PT Lateolin 70-glacornide -13.866 -66.136 TYR53_ARG136_RCS2 2PT Lateolin 70-glacornide -12.856 -53.138 PR053_CL136_RCS2 2PT Lateolin 70-glacornide -12.856 -53.188 PR053_CL136_RCS2 2PT Lateolin 70-glacornide -12.855<		Apigenin 70-glucornide	-12.500	-56 497	TYR38 ARG136	
Docs Pumin 11.355 1.671 ARG136LU(07) Chiorogenia caid 11.332 54.810 PRO32_LYR38 2BXV Apicemin O-glucornide 11.209 59.486 MET30.LEU(07) 2BXV Apicemin O-glucornide 10.766 54.689 GLN47_LYR38_LEU67 Lucolin TO-glucornide 13.595 46.383 PRO32_LUR57_YR856.ARG136 Pumin 12.592 47.084 PRO32_LUR57_YR856.ARG136 Apigenin TO-glucornide 13.165 40.211 PRO32_LW77_R856.ARG136 Apigenin TO-glucornide 12.908 51.639 GLN47_ARG136 Apigenin TO-glucornide 13.666 46.036 TYR856.ARG136 Chiorogenic acid -10.811 52.972 ARG136Q2 PrW Lucolin TO-glucornide 13.866 46.036 TYR856.ARG136 Chiorogenic acid -10.811 52.972 ARG136Q2 TYR85 PrW Lucolin TO-glucornide 13.883 45.947 PRO52_LUR57,ARG136 Apigenin TO-glucornide 12.855 5.800 TYR85ARG136,GLN47,ARG136	1D3G	Luteolin 70-glucornide	-12.647	-60 206	TVR38 ARG136(2)	
Chlorogenic acid 11.332 54.810 PR052.7178.87 2BXV Apjeram 70-glucomide 10.766 54.689 GLN47.TYR8.JEL667 1 Lateolin 70-glucomide 10.766 54.689 GLN47.TYR8.JEL667 2PRL Lateolin 70-glucomide 14.804 64.290 PR052.GLN47.TYR8.56.ARCI36 2PRU Lateolin 70-glucomide 12.592 47.084 PR052.GLN47.TYR8.56.ARCI36 2WV8 Lateolin 70-glucomide 12.543 52.731 GLN47.TYR8.56.ARCI36 2PTT Lateolin 70-glucomide 12.543 52.552 ARCI36.CLN47.TYR8.56.ARCI36 2FFT Lateolin 70-glucomide 12.543 52.552 ARCI36.CLN47.TYR8.56 2FFT Lateolin 70-glucomide 10.815 50.552 ARCI36.CLN47.TYR8.56 2FFT Lateolin 70-glucomide 12.155 53.138 PR052.CLN47 2FFT Lateolin 70-glucomide 12.155 53.138 PR052.RCI3.57 2FFT Chlorogenic acid 11.056 57.702 TYR8.8KR0136 Chlorogenic acid 11.059 53.318 PR052.LCI3.57	1050	Prunin	11 365	51 671	APG136 I EU(67)	
2BXV Apgent TO-glucontide 11.209 -59.456 MET30LEU0ARCI136 Charogenia caid -10.766 -54.689 GLMAT_YR38_LE067 Lateolin TO-glucontide -10.844 -64.290 PRO32_LLE67_YR356_ARGI36 PRL Lateolin TO-glucontide -13.595 -46.383 PRO32_GLMAT_YR356_ARGI36 Prunin -12.543 -52.711 GLMAT_YR55_ARGI36 -63.63 Prunin -12.643 -52.711 GLMAT_YR55_ARGI36 -63.63 Prunin -10.403 -47.984 PRO32_LR5136 -63.63 Prunin -10.403 -47.984 PRO32_LR5136 -63.66 Prunin -10.403 -47.983 PRO32_LR548032 -63.136 Chorogenic acid -10.809 -53.167 ARGI36,PRO52_TR38 -65.97 Chorogenic acid -10.509 -53.167 ARGI36,PRO52_TR38 -65.97 Chorogenic acid -10.566 -55.313 PRO52_ARGI36 -77.72 Provin -11.566 -56.036 TR356,ARGI36,ARGI36 -77.72 Provin <t< td=""><td></td><td>Chlorogenic acid</td><td>-11 332</td><td>-54.810</td><td>PRO52 TVR38</td></t<>		Chlorogenic acid	-11 332	-54.810	PRO52 TVR38	
Link * Oliver, Testa, Letter Larochi 70-phocornide 10.766 54.689 OLIMAT TYRSLEDG'0 2PRL Larochi 70-phocornide 10.766 54.689 PRO32, LURET, TYRS56, ARC136 Append 70-phocornide 13.595 46.383 PRO32, CLINAT, THRS60, JRC136 Prunin 12.592 47.084 PRO32, CLINAT, THRS60, JRC136 Prunin 12.453 45.2731 GLNAT, PRO52, ARC136 Prunin 10.403 47.985 PRO32, CLINAT, TRS56, ARC136 Prunin 10.4041 45.055 ARC136, CLINAT, TRS56, ARC136 Chirospenic acid 10.811 32.072 ARC136, CLINAT, TRS56, ARC136 Chirospenic acid 10.811 32.077 ARC136, CLINAT, ARC136 Chirospenic acid 10.813 45.947 PRO32, LUR67, ARC136 Chirospenic acid 11.056 57.970 TR83, ARC136, CLINAT, ARC136 Chirospenic acid 11.138 456.11 LUC67, TYR83, PRO52, ARC136 Lucetin 70-phucornide 12.55 53.138 PRO52, LUR67, ARC136 Chirospenic acid 11.138 456.11 </td <td>2BXV</td> <td>Apigenin 70 glucornide</td> <td>11 200</td> <td>59.486</td> <td>MET20 LEU50 ADC126</td>	2BXV	Apigenin 70 glucornide	11 200	59.486	MET20 LEU50 ADC126	
Lintugian kala -10.42 -54.98 Lintus 2PRL Labolin 70-glucomide -10.42 -54.98 PRO52, LUGOT/TR356, ARC136 2PRL Labolin 70-glucomide -13.95 -46.383 PRO52, LUGOT/TR356, ARC136 2WV8 Apigenin 70-glucomide -13.165 -60.201 PRO52, ARC136, ARC136 2WV8 Labolin 70-glucomide -12.453 -52.71 GLN47, TR356, ARC136 Prunin -10.403 -47.985 PRO52, CLN47 TR366, ARC136, ARC136 Prunin -10.403 -47.985 PRO52, CLN47 TR366, ARC136, ARC13	2DA V	Chlorogonia agid	-11.209	-39.480	CI N47 TVD28 I EU67	
2PRL Lateolar 70-glacomide -14.991 -44.993 Lebcs.m.LDJ_TYRES6.ARC136 2WW Lateolar 70-glacomide -12.592 -47.084 PROS.2LDLAT_TIRES6.LEU359 2WWS Lateolar 70-glacomide -12.592 -47.084 PROS.2LDLAT_TIRES6.LEU359 2WWS Lateolar 70-glacomide -12.543 -52.711 CLNAT_TRES6.ARC136 2FPT Lateolar 70-glacomide -12.908 -51.099 CLNAT_ARC135 2FPT Lateolar 70-glacomide -13.845 -50.597 ARC136(2) Chlorogenic acid -10.811 -52.977 ARC136(RPOS2_TYRES6 ARC136 2FPV Lateolar 70-glacomide -13.883 -55.947 ARC136(RPOS2_TYRES6 2FPV Chlorogenic acid -10.806 -57.072 TYRES6.ARC136(RPOS2_TYRES6 3FIG Algenin 70-glacomide -12.515 -53.138 PROS2_ARC136(RPOS2_TYRES6 Apjenin 70-glacomide -12.855 -53.138 PROS2_ARC136(RPOS2_TYRES6 Apjenin 70-glacomide -12.855 -53.138 PROS2_ARC136(ROS2_TYRES6 Apjenin 70-glacomide -11.858		Lutaolin 70 glucornida	10.645	-54.089		
24K1. Labola (1) Organization (1) -14.88 -46.280 PK025. (10.07.1) RESUMATION 2WV8 Labola (1) -14.88 -46.280 PK025. (10.07.1) RESUMATION 2WV8 Labola (1) -14.88 -46.280 PK025. (10.07.1) RESUMATION 2WV8 Labola (1) -12.85 -46.280 PK025. (10.07.1) RESUMATION 2WV8 Labola (1) -12.85 -46.280 PK025. (10.07.1) RESUMATION 2FFT Labola (1) -12.85 -55.59 ARG136(2) Charogenic acid -10.841 -52.59 ARG136(2) Charogenic acid -10.59 -5.597 ARG136(PR052) Prunin -11.823 -5.597 ARG136(PR052) Charogenic acid -10.590 -5.517 ARG136(PR052) Charogenic acid -11.066 -57.702 TYK38,ARG136 Charogenic acid -11.066 -57.702 TYK38,ARG136 Charogenic acid -11.138 -56.611 LEUG7.77K360 Charogenic acid -11.438 -56.611 LEUG7.77K360 Char	2001	Luteolin 70 glucornide	-10.043	-34.400	DDO52 LUE67 TVD256 ADC126	
Apgenin 7.0 glucomide -13.53 -40.53 FRO32.11.11.1 (RESOLOCIS) 2WV8 Lapogenin 7.0 glucomide -13.55 -40.24 FRO32.11.11.1 (RESOLOCIS) 2WV8 Lucein 7.0 glucomide -12.54 -50.21 FRO32.11.11.1 (RESOLOCIS) 2FPT Lucein 7.0 glucomide -12.08 -51.03 FRO32.11.11.1 (RESOLOCIS) 2FFV Lucein 7.0 glucomide -13.045 -50.59 ARG136(2) Chirogeni acid -10.845 -50.597 ARG136(ROS2) Prunin -11.823 -5.597 ARG136(ROS2) Chirogeni acid -10.509 -53.167 ARG136(ROS2) Prunin -11.825 -53.138 FRO32.1VB356, ARG136 Appenin 7.0 glucomide -12.51 -55.51 TYRB36, ARG136 Chirogeni acid -11.138 -56.611 TYRB36, ARG136 Chirogeni acid -11.366 -58.060 TYRB36, ARG136, GLANP, FRO52, ARG136 Chirogeni acid -11.366 -58.051 TYRB36, ARG136, GLANP, FRO52, CLANP, FRO52,	2PKL	Aniconin 70-glucorilde	-14.604	-04.290	PRO52, LUE07, 11R550, AR0150	
2WV8 Luncoin 7 0-glucomide -12.592 -47.004 PR02, TYR356, ARG136 2WV8 Apgenin 7 0-glucomide -12.543 52.713 GLNAPT, PR052, ARG136 2FPT Lancoin 7 0-glucomide -12.908 -45.985 PR052, CLNAF 2FPT Lancoin 7 0-glucomide -10.495 -5.957 ARG136, PR052 2FPY Lancoin 7 0-glucomide -13.666 -66.036 TYR356, ARG136, PR052 2FPV Lancoin 7 0-glucomide -13.866 -56.076 ARG136, PR052, TYR38 2FPV Lancoin 7 0-glucomide -13.866 -55.97 ARG136, PR052, TYR38 2FPV Lancoin 7 0-glucomide -13.866 -55.97 ARG136, PR052, TYR38 2FPV Lancoin 7 0-glucomide -12.55 -53.138 PR052, LARG136, PR052, TYR38 2FPV Chiorogenic acid -11.138 -56.611 LEUCONT, TYR38, PR053, PR053 2FP1 Lancoin 7 0-glucomide -12.65 -58.306 TYR38, ZR0136, GLN47, PR052, ZR0136 2FQ1 Lancoin 7 0-glucomide -11.56 -58.806 TYR38, ZR0136, GLN47, PR052, ZR0136 <tr< td=""><td></td><td>Apigenin / O-giucornide</td><td>-13.393</td><td>-40.383</td><td>PRO52,0LN47,1 HK500,LEU559</td></tr<>		Apigenin / O-giucornide	-13.393	-40.383	PRO52,0LN47,1 HK500,LEU559	
2wws Lankonin 7 Cybucomide -13.103 -00.201 FCR32, 11K33, 240136 Prunin -10.403 -77.88 PR052, CLN47 2FPT Lancoln 70-glucomide -12.908 -51.08 CLN47, ARC136 2FPT Lancoln 70-glucomide -12.908 -51.08 CLN47, ARC136 2FPW Chorogenic acid -10.451 -52.73 ARG136, RR013 2FPW Lancoln 70-glucomide -13.666 -66.036 TTR356, ARC136, PR052 Phanin -11.899 -53.07 ARG136, RR013, TWR38 ARG136, RR013, TWR38 3F16 Lancoln 70-glucomide -12.955 -53.97 ARG136, RR013, TWR38 2FPY Chorogenic acid -11.056 -53.91 TWR38, ARG136, CLN67, ARG136 Chorogenic acid -11.95 -50.333 TWR38, RR0136 Chorogenic acid -11.856 -59.01 LUK07, TWR38, ARG136, GLN47, ARG136 Caffaric acid -11.472 -50.901 LUK07, TWR38, ARG136, GLN47, PR052 2FQI Lancoln 70-glucomide -12.456 -58.305 TWR38, ARG136, GLN47, PR052, CAG136	200700	Fiumi Lutaclin 7.0. alucamida	-12.392	-47.064	PRO52, ARO150, PRO52, TVP256, ARC126	
Apgemin 7.0-glucomide -12.343 -32.711 CDN37, PRO52, CDN37 2FPT Luteolin 7.0-glucomide -12.908 -51.039 GLN47, ARG136 Apgemin -0.0311 -52.972 ARG136(2) Chiorogenic acid -10.811 -52.972 ARG136(RSC2) 2PPV Luteoln 7.0-glucomide -13.666 -60.056 TN 8356, ARG136, PRO52 2PPV Chiorogenic acid -10.833 -55.977 ARG136, PRO52, TN 838 3Fi6 Luteoln 7.0-glucomide -12.153 -53.138 PRO52, ALG136, CT RN 360 2PPY Chiorogenic acid -11.066 -57.702 TN 838, PRO52, ARG136 2PPY Chiorogenic acid -11.155 -59.333 TR 83, CLN 7, ARG136 2PPY Chiorogenic acid -11.156 -58.51 TN 838, RG136, GLN 47, PRO52, CLB 7, TN 838, GLN 47, PRO52, ARG136, GLN 47, PRO52, CLB 7, TN 838, GLN 47	2008	Luteonn / O-glucornide	-13.105	-00.201	PKU52, 1 1 K550, AKU150	
Primin -10.403 -47.983 PEO2.4LBAY 2PT Luteshin 7.0-glucomide -10.845 50.539 ARG136(2) 2FPV Diatogenia acid -10.845 50.539 ARG136(2) 2FPV Luteshin 7.0-glucomide -13.666 -66.036 TTR356.ARG136(PRO52) 2FPV Luteshin 7.0-glucomide -13.845 -5.597 ARG136(PRO52) TTR35 3F16 Luteshin 7.0-glucomide -13.843 -55.97 ARG136(PRO52) TTR35 3F16 Luteshin 7.0-glucomide -12.155 -53.181 PRO52, LUES7, TR35 2FPY Chiorogenic acid -11.138 -50.616 LTR35, ARG136 Catacia acid -11.138 -50.616 LTR35, CR0136 Catacia acid -11.138 -50.616 TTR35, CR0136, GLN47, RC0136 Catacia acid -11.138 -50.616 TTR35, CR0136, GLN47, RC0136 Catacia acid -10.72 -50.801 TER35, CR0136, GLN47, RC032 Catacia acid -10.72 -50.801 TER35, CR0136, GLN47, RC032 Catacia acid		Apigenin / O-giucornide	-12.543	-52.751	GLN47,PRO52,ARG150	
21°P1 Lateoin 7.0-glucomide -1.2908 >-51.059 ARG13672 Apigenia -0.8845 >50.559 ARG13672 21°PV Lateoin 7.0-glucomide -13.666 -60.036 TYR356, ARG136, PROS2 21°PV Lateoin 7.0-glucomide -13.883 -55.977 ARG136, PROS2, TYR38 3F16 Lateoin 7.0-glucomide -12.155 -53.138 PROS2, LUE67, ARG136, THR360 21°PV Chorogenic acid -11.066 -57.702 TYR38, ARG136, CHR360 21°PV Chorogenic acid -11.055 -59.333 TYR38, ARG136, CHR360 21°PV Chorogenic acid -11.556 -58.006 TYR38, ARG136, CHR370 21°Q Lateoin 7.0-glucomide -12.565 -58.806 TYR38, ARG136, GLN47, PROS2, CLateria acid 21°Q Lateoin 7.0-glucomide -10.290 -50.543 LEU67, TYR38, ARG136, GLN47, PROS2, CLateria acid 21°Q Lateoin 7.0-glucomide -10.290 -50.543 LEU67, TYR38, ARG136, GLN47, PROS2, ARG136 21°Q Lateoin 7.0-glucomide -10.290 -50.543 LEU67, TYR38, ARG136, GLN47, PROS2, ARG136	AFDT	Prunin	-10.403	-47.985	PRO52,GLN47	
Apgenn -10.849 -90.599 ARU150(2) 2FPV Lucebin 7 O-glucomide -13.666 -66.036 TYR356.ARG136.PRO52 2FPV Lucebin 7 O-glucomide -13.866 -66.036 TYR356.ARG136.PRO52 2FPV Chorogenic acid -10.509 -53.167 ARG136.PRO52_TYR38 2FP4 Chorogenic acid -10.66 -57.702 TYR38.PRO52_ARG136 2FP4 Chorogenic acid -10.66 -57.702 TYR38.ARG136 2FP4 Chorogenic acid -11.555 -59.333 TYR38.ARG136 2FP01 Lucebin 7 O-glucomide -12.565 -58.606 TYR38.ARG136.GLN47.PRO52_ 2F01 Lucebin 7 O-glucomide -11.566 -58.305 TYR38.ARG136.GLN47.PRO52_ 2F10 Lucebin 7 O-glucomide -11.57 -49.828 PRO52_ 2F10 Lucebin 7 O-glucomide -9.716 -48.027 PRO52_ 2F10 Lucebin 7 O-glucomide -9.716 -48.027 PRO52_ 2F10 Lucebin 7 O-glucomide -9.716 -48.027 PRO52_ <	2FP1	Luteolin / O-glucornide	-12.908	-51.039	GLN47,ARG136	
Chorogene acid -10.811 -52.972 ARG136,PRO52 2PFV Inteolin 7 O-glucomide -11.823 -5.597 ARG136,PRO52,TYR38 3F16 Lateolin 7 O-glucomide -13.883 -5.5947 ARG136,PRO52,TYR38 3F16 Lateolin 7 O-glucomide -12.155 -53.138 PRO52,LUE67,ARG136,THR360 Chorogenic acid -11.066 -57.702 TYR38,ARG136 Chorogenic acid -11.595 -59.333 TYR38,ARG136 Caftaric acid -11.595 -59.333 TYR38,ARG136,GLAV7,ARG136 Caftaric acid -11.595 -59.033 TYR38,ARG136,GLAV7,ARG136 Caftaric acid -11.595 -59.033 TYR38,ARG136,GLAV7,RG136 Caftaric acid -11.57 -49.824 PRO52 Caftaric acid -11.472 -56.901 LEU/07,TYR38,ARG136,GLAV7,RO52, SFIQ Chorogenic acid -11.472 -56.901 LEU/07,TYR38,ARG136,GLAV7,RO52, Lateolin 7 O-glucomide -10.290 -50.433 LEU/2 PRO52 Jareonin 7 O-glucomide -90.716 -48.027 PRO5		Apigenin	-10.845	-50.559	ARG136(2)	
2PPV Luteolin 7 0-glucomide -13.666 -66.036 TYR356,AR0136,PRO52,TYR38 Prunin -11.823 -5.597 ARG136,PRO52,TYR38 Sife Luteolin 7 0-glucomide -12.155 -53.138 PRO52,LUE67,AR0136 Chlorogenic acid -11.056 -57.31 PRO52,LUE67,AR0136 Chlorogenic acid -12.051 -55.551 TYR38,GLN47,ARG136 Cafaric acid -11.138 -56.611 LEUC6,TYR36 Cafaric acid -11.472 -56.091 LEUC7,TYR38,ARG136,GLN47,PRO52, Cafaric acid -11.472 -56.091 LEUC7,TYR38,ARG136,GLN47,PRO52, Cafaric acid -11.472 -56.091 LEUC7,TYR38,ARG136,GLN47,PRO52, Chorogenic acid -11.472 -56.091 LEUC4,TYR38,ARG136,GLN47,PRO52, Orlorogenic acid -11.472 -56.091 LEUC4,TYR38,ARG136,GLN47,PRO52, Phoridzin -9.716 -48.027 PRO52 SFL Lateolin 7 0-glucomide -10.496 -53.739 PRO52,LEU42 Phoridzin -10.99 -54.431 PRO52,LEU42 -54.631 <td></td> <td>Chlorogenic acid</td> <td>-10.811</td> <td>-52.972</td> <td>ARG136,PRO52</td>		Chlorogenic acid	-10.811	-52.972	ARG136,PRO52	
Prunn -11.823 -5.397 ARG136/H0052, YK38 3F16 Lutooin 7.0-glucornide -12.833 -55.947 PR052, LUE67.ARG136 Apigenin 7.0-glucornide -12.155 -55.131 PR052, ARG136/H052, YK83 Chlorogenic acid -11.066 -57.702 TYR33, RR0136 Cuborgenic acid -11.056 -59.333 TYR33, RR0136 Caftaric acid -11.138 -56.601 LEUC/TYR36 Caftaric acid -11.595 -58.055 TYR33, RR0136, GLN47, PR052, Caftaric acid Chlorogenic acid -11.472 -56.901 LEUC/TYR38, ARG136, GLN47, PR052, Caftaric acid Chlorogenic acid -11.172 -56.901 LEUG/TYR38, ARG136, GLN47, PR052, Caftaric acid Jattochin 7.0-glucornide -90.706 -48.027 PR052 Jattochin 7.0-glucornide -10.290 -50.543 LUE42, THR03, TYR356 Jattochin 7.0-glucornide -10.196 -39.048 LUE42, THR03, TYR356 Jattochin 7.0-glucornide -10.196 -39.048 LUE42, THR03, TYR356 Jattochin 7.0-glucornide -10.290 -53.438 PR052, ARG13	2FPV	Luteolin 7 O-glucornide	-13.666	-66.036	TYR356,ARG136,PRO52	
Chlorogenic acid -10.509 -53.167 ARG136/H052,1YR38 3F16 Apigenin 7.0-glucornide -12.155 -53.138 PRO52,ARG136,THR360 Chlorogenic acid -12.051 -55.51 TYR38,ARG136 2FPY Chlorogenic acid -12.051 -55.551 TYR38,GLN47,ARG136 Cataric acid -11.138 -56.611 LEUG/TYR36 2FQI Lattosin 7.0-glucornide -12.565 -58.606 TYR38,ARG136,GLN47,PRO52, Cataric acid 2FQI Chlorogenic acid -11.566 -58.305 TYR38,ARG136,GLN47,PRO52, Cataric acid 2FQI Chlorogenic acid -11.157 -49.828 PRO52 Chlorogenic acid -11.167 -49.828 PRO52 2FIQ Chlorogenic acid -10.290 -50.43 LEU42 Phloridzin -9.716 -48.027 PRO52 3FIQ Lattosin 7.0-glucornide -9.950 -54.281 PRO52,ARG136 (C)A47,TR356 Apigenin 7.0-glucornide -11.969 -60.624 ARG136,TYR356 Prunin -11.029 -53.4455 <		Prunin	-11.823	-5.597	ARG136,PRO52,TYR38	
3F16 Luceoin 7 0-glucomide -13.883 -55.947 PRO52, LUE67, ARG136 Apigenin 7 0-glucomide -12.155 -53.138 PRO52, ARG136, THR360 2FPY Chiorogenic acid -11.066 -57.702 TYR38, PRO52, ARG136 2FPX Chiorogenic acid -11.55 -59.333 TYR38, GLN47, ARG136 2FQI Lateoin 7 0-glucomide -12.565 -58.606 TYR38, AG136, GLN47, ARG136 2FQI Caftaria acid -11.566 -58.305 TYR38, AG136, GLN47, PRO52, Caftaria acid -11.472 -56.901 LEU42 Chiorogenic acid -11.173 -49.828 PRO52 2FIL Luteolin 7 0-glucomide -90.716 -48.027 PRO52 3FIL Luteolin 7 0-glucomide -90.950 -54.281 PRO52, LUF4 Apigenin 7 0-glucomide -10.96 -39.048 LUE42 Phoridzin -10.96 -30.481 LUE42 Apigenin 7 0-glucomide -11.766 -62.255 PRO52, ARG136 (C)LA47 3GOU Apigenin 7 0-glucomide -11.969		Chlorogenic acid	-10.509	-53.167	ARG136,PRO52,TYR38	
Apigenin 7 0-glucomide -12.155 -53.138 PR052,ARG136,THR360 2FFY Chlorogenic acid -12.061 -55.551 TYR38,RR0136 2FO Chlorogenic acid -12.051 -55.551 TYR38,ARG136 2FQ Latteolin 7.0-glucomide -11.595 -59.333 TYR38,ARG136,GLN47,ARG136 2FQ Latteolin 7.0-glucomide -11.566 -58.806 TYR38,ARG136,GLN47,PR052, Caftaric acid -11.472 -56.901 LEU67,TYR38,ARG136,GLN47,PR052, Caftaric acid -11.157 -49.828 PR052, Cubrogenic acid -11.157 -49.828 PR052 Luteolin 7.0-glucomide -10.290 -50.543 LEU67,TYR38,ARG136,GLN47,PR052 3FIQ Chlorogenic acid -10.490 -53.739 PR052,ARG136 Photicitar -9.950 -54.281 PR052,ARG136(2),GLN47 Apigenin 7.0-glucomide -12.469 -53.739 PR052,ARG136(2),GLN47 Churogenic acid -11.029 -53.454 GLM37,PR052, ARG136(2),GLN47 GOV Apigenin 7.0-glucomide -11.476	3FJ6	Luteolin 7 O-glucornide	-13.883	-55.947	PRO52, LUE67, ARG136	
Chlorogenic acid -11.066 -57.702 TYR38.PR052.ARG136 2FPY Chlorogenic acid -12.051 -55.551 TYR38.ARG136 2FQI Cafaric acid -11.138 -56.611 LEUG7.TYR36.00 2FQI Luteolin7 O-glucomide -12.565 -58.606 TYR38.ARG136.GLA47.ARG136 2FQI Chlorogenic acid -11.576 -58.606 TYR38.ARG136.GLA47.PR052. Cafaric acid -11.472 -56.901 LEU67.TYR58.ARG136.GLA47.PR052. Chlorogenic acid -11.157 -49.828 PR052 2FQI Luteolin 7 O-glucomide -9.716 -48.027 PR052 2FIL Luteolin 7 O-glucomide -9.950 -54.281 PR052.ARG136 Apigenin 7 O-glucomide -10.96 -60.624 ARG136.CLA2 Apigenin 7 O-glucomide -11.696 -60.624 ARG136.CLA47 3GOU Luteolin 7 O-glucomide -11.696 -60.624 ARG136.CLA47 3GOU Luteolin 7 O-glucomide -11.766 -62.255 PR052.ARG136.CLA47 Apigenin 7 O-glucomide -11.		Apigenin 7 O-glucornide	-12.155	-53.138	PRO52,ARG136,THR360	
2FPY Chorogenic acid -12.051 -55.551 TYR38,ARG136 Lutcolin 7 O-glucornide -11.595 -59.333 TYR38,GLN47,ARG136 2FQI Latteolin 7 O-glucornide -12.565 -58.606 TYR38,GLN47,ARG136 Caffaric acid -11.566 -58.305 TYR38,GLN47,ARG136,GLN47,PRO52, Caffaric acid -11.157 -49.828 PRO52 Lutcolin 7 O-glucornide -10.290 -50.543 LEU42 Phloridzin -9.716 -48.027 PRO52 Apgenin 7 O-glucornide -10.196 -39.048 LUE42,THRG3,TYR356 Apigenin 7 O-glucornide -10.484 -42.536 PRO52,LEU42 3GOX Apigenin 7 O-glucornide -11.599 -50.643 RAG136(2),GLN47 Luteolin 7 O-glucornide -11.029 -53.645 GLN47,PRO52, ARG136 -11.746 GOU Luteolin 7 O-glucornide -11.746 -62.255 PRO52,ARG136(2),GLN47 Prunin -11.292 -53.6463 GLN47,PRO52,ARG136(2),CLN47 Apigenin 7 O-glucornide -11.746 -62.255 PRO52,ARG		Chlorogenic acid	-11.066	-57.702	TYR38,PRO52,ARG136	
Luteolin 7 O-glucornide -11.138 -56.611 LURONT/R360 2FQI Luteolin 7 O-glucornide -12.565 -58.606 TYR38,GLN47,ARG136 2FQI Chlorogenic acid -11.156 -58.305 TYR38,ARG136,GLN47,PRO52, 2FQI Chlorogenic acid -11.177 -49.828 PRO52 3FIQ Chlorogenic acid -11.177 -49.828 PRO52 2FQI Luteolin 7 O-glucornide -9.076 -48.027 PRO52 3FIQ Luteolin 7 O-glucornide -9.076 -48.027 PRO52 3FIL Luteolin 7 O-glucornide -9.076 -48.027 PRO52 3GOX Apigenin 7 O-glucornide -10.96 -39.048 LUF42,THR63,TYR356 2GOX Apigenin 7 O-glucornide -11.499 -53.645 GLN47,FR052, ARG136 3GOX Apigenin 7 O-glucornide -11.746 -62.255 PRO52, ARG136(D,GLN47,THR360 Apigenin 7 O-glucornide -11.736 -61.162 ARG136,TYR38 Phioridzin -9.601 -47.349 ARG136,GLN47,FR052,LEV67 <t< td=""><td>2FPY</td><td>Chlorogenic acid</td><td>-12.051</td><td>-55.551</td><td>TYR38,ARG136</td></t<>	2FPY	Chlorogenic acid	-12.051	-55.551	TYR38,ARG136	
Cafaric acid -11.138 -56.611 LEUG7.TYR360 2FQI Lutcolin 70-glucomide -12.565 -58.606 TYR38.ARG136.GLN47.PRO52, Caftaric acid 3FIQ Caftaric acid -11.472 -56.901 LEU67.TYR36.ARG136.GLN47.PRO52, LEU67.TYR38.ARG136.GLN47.PRO52, LEU67.TYR38.ARG136.GLN47.PRO52 3FIQ Chlorogenic acid -11.157 -49.828 PRO52 2 Phloridzin -9.716 -48.027 PR052 3FIL Lutcolin 7 0-glucomide -10.484 -42.536 PR052.ARG136 3GOX Apigenin 7 0-glucomide -12.469 -53.739 PR052.LEU42 3GOX Apigenin 7 0-glucomide -11.669 -60.624 ARG136.TYR38 7 Luteolin 7 0-glucomide -11.029 -53.482 ARG136.TYR38 6GOU Luteolin 7 0-glucomide -10.095 -55.482 ARG136.TYR38 9 Puloridzin -9.601 -47.349 ARG136.TYR38 9 Puloridzin -9.601 -47.349 ARG136.TYR38 9 Puloridzin -9.601 -47.349		Luteolin 7 O-glucornide	-11.595	-59.333	TYR38,GLN47,ARG136	
2FQI Luteolin7 O-glucornide -12.565 -58.606 TYR38,GLN47,ARG136 Chlorogenic acid -11.566 -58.005 TYR38,ARG136,GLN47,PRO52, Caftaric acid -11.157 -49.828 PRO52 Luteolin 7 O-glucornide -10.290 -50.543 LEU42 Phloridzin -9.716 -48.027 PRO52 3FIL Luteolin 7 O-glucornide -10.946 -39.048 LUE42,THR63,TYR356 Phloridzin -10.196 -39.048 LUE42,THR63,TYR356 Apigenin 7 O-glucornide -12.469 -53.739 PRO52,LR0136 Apigenin 7 O-glucornide -11.969 -60.624 ARG136,TYR38 Prunin -11.029 -53.643 GLM47,PRO52, ARG136 3GOU Luteolin 7 O-glucornide -11.746 -62.255 PRO52,ARG136,GLN47,THR360 Apigenin 7 O-glucornide -10.095 -55.482 ARG136,TYR38 JU2O Phloridzin -9.601 -47.349 ARG136,TYR38 JU2O Luteolin 7 O-glucornide -11.736 -61.162 ARG136,GLN47,THR36,DRO52		Caftaric acid	-11.138	-56.611	LEU67,TYR360	
Chlorogenic acid-11.566-58.305TYR38,ARG136,GLN47,PRO52, Caftaric acid3FIQChlorogenic acid-11.157-49.828PRO52Luteolin 7 O-glucornide-10.290-50.543LEU42Phloridzin-9.716-48.027PRO523FILLuteolin 7 O-glucornide-10.484-42.536PRO52,ARG136Apigenin 7 O-glucornide-9.950-54.281PRO52,ARG136(2),GLN47Apigenin 7 O-glucornide-12.469-53.739PRO52,ARG136(2),GLN47Luteolin 7 O-glucornide-11.969-60.624ARG136,TYR38Prunin-11.029-53.645GLN47,PRO52, ARG136(2),GLN47Jacomide-11.746-62.255PRO52,ARG136,GLN47,THR360Apigenin 7 O-glucornide-11.746-62.55PRO52,ARG136,GLN47,THR360Apigenin 7 O-glucornide-10.953-55.482ARG136,TYR383U20Prunin-12.715-54.631TYR356,PRO52(2),ARG136(2),THR360Apigenin 7 O-glucornide-10.923-59.133LEUG7,ARG1363W7RLuteolin 7 O-glucornide-14.443-52.48ARG136(2),PRO52,TYR356,LEU67Apigenin 7 O-glucornide-14.078-59.453CM47,ARG136(2)3W7RLuteolin 7 O-glucornide-14.078-59.4631TYR356,RPO52,ARG136,GLN47Cafaric acid-11.766-61.62ARG136(2),PRO523W7RLuteolin 7 O-glucornide-14.443-65.248ARG136(2),PRO52,TYR356,LEU67Apigenin 7 O-glucornide-10.614-54.397LEU67,TYR356,RPO52,THR63Apigenin 7	2FQI	Luteolin7 O-glucornide	-12.565	-58.606	TYR38,GLN47,ARG136	
Gafaric acid -11.472 -56.01 LEUG7.TYR38,ARG136,GLN47,PRO52 3FIQ Chlorogenic acid -11.157 49.828 PRO52 Puloridzin -9.716 -48.027 PRO52 JFL Lutcolin 7 O-glucornide -10.290 -50.543 LEU42 Phloridzin -9.716 -48.027 PRO52 Apigenin 7 O-glucornide -10.196 -39.048 LUE42,THR63,TYR356 Apigenin 7 O-glucornide -12.469 -53.739 PRO52,ARG136(2),GLN47 JGOX Apigenin 7 O-glucornide -11.029 -53.643 GLN47,PRO52,ARG136 Prunin -11.029 -53.643 GLN47,PRO52,ARG136(2),GLN47,THR360 Apigenin 7 O-glucornide -10.055 -55.482 ARG136,TYR38 JU20 Prunin -12.715 -54.631 TYR356,PRO52(2),ARG136(2),THR360 Apigenin 7 O-glucornide -10.923 -59.133 LEUG7,ARG136(2),PRO52,ARG136(2),THR360 Apigenin 7 O-glucornide -14.078 -59.463 GLN67,ARG136,CDPRO52,THR36 Apigenin 7 O-glucornide -14.078 -59.448 ARG136(2),PRO5		Chlorogenic acid	-11.566	-58.305	TYR38,ARG136,GLN47,PRO52,	
3FIQ Chlorogenic acid -11.157 -49.828 PRO52 Luteolin 7 O-glucornide -10.290 -50.543 LEU42 Phloridzin -9.716 -48.027 PRO52 3FJL Luteolin 7 O-glucornide -10.484 -42.536 PRO52,ARG136 Apigenin 7 O-glucornide -10.196 -39.048 LUE42,THR63,TYR356 3GOX Apigenin 7 O-glucornide -11.069 -60.624 ARG136,GYR38 Prunin -11.029 -53.645 GLN47,PRO52,ARG136 GLN47,PRO52,ARG136,GYR38 3GOU Luteolin 7 O-glucornide -11.746 -62.255 PRO52,ARG136,GYR38 Apigenin 7 O-glucornide -11.746 -62.255 PRO52,ARG136,GYR38 3U20 Prunin -12.715 -54.631 TYR356,PRO52(2),ARG136(2),THR360 Apigenin 7 O-glucornide -11.736 -61.162 ARG136,TYR38 3U20 Prunin -12.715 -54.631 TYR356,PRO52,CARG136 Apigenin 7 O-glucornide -11.736 -65.148 ARG136,GYR35 Apigenin 7 O-glucornide -14.443 -65.		Caftaric acid	-11.472	-56.901	LEU67,TYR38,ARG136,GLN47,PRO52	
Luteolin 7 O-glucomide -10.290 -50.543 LEU42 Phloridzin -9.716 48.027 PRO52 3FIL Luteolin 7 O-glucomide -10.484 42.536 PRO52,ARG136 Apigenin 7 O-glucomide -9.950 -54.281 PRO52,LEU42 3GOX Apigenin 7 O-glucomide -12.469 -53.739 PRO52,ARG136(2),GLN47 Luteolin 7 O-glucomide -11.969 -60.624 ARG136,TYR38 - Pronin -11.029 -53.645 GLN47,PRO52, ARG136,GLN47,THR360 - Apigenin 7 O-glucomide -11.746 -62.255 PRO52,ARG136,GLN47,THR360 Apigenin 7 O-glucomide -10.095 -55.482 ARG136,TYR38 3U20 Prunin -12.715 -54.631 TYR356,PRO52(2),ARG136(2),THR360 Apigenin 7 O-glucomide -11.736 -61.162 ARG136(3),PRO52 Apigenin 7 O-glucomide -11.770 -59.445 GLN47,ARG136(2),PRO52,TYR356,LEU67 Apigenin 7 O-glucomide -10.614 -54.308 LEU67(2),ARG136,CPRO52,THR360,PRO52 3ZWS Caftaric acid -10.717	3F1Q	Chlorogenic acid	-11.157	-49.828	PRO52	
Phloridzin -9.716 48.027 PRO52 3FJL Luteolin 7 O-glucomide -10.484 -42.536 PRO52,ARG136 Apigenin 7 O-glucomide -9.950 -54.281 PRO52,LEU42 3GOX Apigenin 7 O-glucomide -12.469 -53.739 PRO52,ARG136(2),GLN47 Luteolin 7 O-glucomide -11.969 -60.624 ARG136,GLN47,THR38 Prunin -11.095 -55.482 ARG136,GLN47,THR360 Apigenin 7 O-glucomide -11.746 -62.255 PRO52,ARG136,GLN47,THR360 Apigenin 7 O-glucomide -10.095 -55.482 ARG136,TTR38 Plonidzin -9.601 -47.349 ARG136,TTR38 3U20 Prunin -12.715 -54.631 TYRS56,PRO52/0,ARG136(2),THR360 Apigenin 7 O-glucomide -14.078 -59.133 LEU67,ARG136(2),PRO52 TYR356,LEU67 Apigenin 7 O-glucomide -14.078 -59.445 GLN47,ARG136(2),PRO52,TYR356,LEU67 Caftaric acid -10.612 -46.071 ARG136,CLN47 Apigenin 7 O-glucomide -14.078 -59.445 GLN47,ARG136,CLN47	-	Luteolin 7 O-glucornide	-10.290	-50.543	LEU42	
3FJLLuteolin 7 O-glucomide-10.484-42.536PROS2_ARG136Apigenin 7 O-glucomide-9.950-54.281PROS2_LEU423GOXApigenin 7 O-glucomide-12.469-53.739PROS2_LEU423GOXApigenin 7 O-glucomide-11.969-60.624ARG136,TYR38Prunin-11.029-53.645GLN47,PROS2, ARG1363GOULuteolin 7 O-glucomide-11.746-62.255PROS2,LEU423GOUPrunin-11.029-53.645GLN47,PROS2, ARG136Apigenin 7 O-glucomide-10.095-55.482ARG136,TYR38Phloridzin-9.601-47.349ARG136,TYR383U20Prunin-12.715-54.631TYR356,PROS2(2),ARG136(2),THR360Luteolin 7 O-glucomide-10.923-59.133LEU67,ARG136Luteolin 7 O-glucomide-10.923-59.133LEU67,ARG136Apigenin 7 O-glucomide-14.443-59.445GLN47,ARG136(2)Apigenin 7 O-glucomide-14.443-59.445GLN47,ARG136(2)Apigenin 7 O-glucomide-11.706-57.660LEU67,TYR36,PRO52,THR36,PRO523ZWSCaftaric acid-10.612-46.071ARG136,GLN47Phloridzin-1.510-53.487TYR35,FRO52,THR364JGDPhloridzin-11.210-53.387LEU67,TYR384JGDPhloridzin-10.547-53.397LEU67,TYR384JGDPhloridzin-10.547-53.397LEU67,TYR384JGDPhloridzin-10.682-54.822TYR38,LEU68Apigenin 7		Phloridzin	-9.716	-48.027	PRO52	
Phloridzin -10.196 -39.048 LUE42,THR63,TYR356 3GOX Apigenin 7 O-glucomide -9.950 -54.281 PRO52,LEU42 3GOX Apigenin 7 O-glucomide -11.969 -50.624 ARG136,TYR38 Prunin -11.029 -53.645 GLN47,PRO52, ARG136 (CLN47, ARG136,TYR38 -10.095 3GOU Luteolin 7 O-glucomide -11.746 -62.255 PRO52,ARG136,GLN47,THR360 Apigenin 7 O-glucomide -11.736 -61.62 ARG136,TYR38 Phloridzin -9.601 -47.349 ARG136,TYR38 3U20 Prunin -12.715 -54.631 TYR356,PRO52(2),ARG136(2),THR360 Luteolin 7 O-glucomide -11.736 -61.162 ARG136(2),PRO52,TYR356,LEU67 Apigenin 7 O-glucomide -14.478 -65.248 ARG136(2),PRO52,TYR356,LEU67 Apigenin 7 O-glucomide -14.078 -59.445 GLN47,ARG136(2) Caftaric acid -10.612 -46.071 ARG136,GLN47 Apigenin 7 O-glucomide -11.70 -57.660 LEU67(2),ARG136,MR360,PRO52 3ZWS Caftaric acid -10	3FJL	Luteolin 7 O-glucornide	-10.484	-42.536	PRO52,ARG136	
Apigenin 7 O-glucomide -9.950 -54.281 PRO52,LEU42 3GOX Apigenin 7 O-glucomide -12.469 -53.739 PRO52,ARG136(2),GLN47 1 Luteolin 7 O-glucomide -11.969 -60.624 ARG135,CTYR38 Prunin -11.029 -53.645 GLN47,PRO52, ARG136 3GOU Luteolin 7 O-glucomide -11.746 -62.255 PRO52,ARG136,GLN47,THR360 Apigenin 7 O-glucomide -10.095 -55.482 ARG136,TYR38 9hloridzin -9.601 -47.349 ARG136,TYR38 3U20 Prunin -12.715 -54.631 TYR356,PRO52(2),ARG136(2),THR360 Luteolin 7 O-glucomide -11.736 -61.162 ARG136(2),PRO52 ARG136(2),PRO52 Apigenin 7 O-glucomide -11.716 -55.248 ARG136(2),PRO52,TYR356,LEU67 3W7R Luteolin 7 O-glucomide -14.443 -65.248 ARG136(2),PRO52,TYR356,LEU67 Cafaric acid -10.612 -46.071 ARG136,CLN47 -65.248 Apigenin 7 O-glucomide -10.612 -46.071 ARG136,CLN47 Dioridzin		Phloridzin	-10.196	-39.048	LUE42,THR63,TYR356	
3GOX Apigenin 7 O-glucomide -12.469 -53.739 PR052, ARG136(2), GLN47 Luteolin 7 O-glucomide -11.969 -60.624 ARG136, TYR38 Prunin -11.029 -53.645 GLN47, PR052, ARG136 3GOU Luteolin 7 O-glucomide -11.746 -62.255 PR052, ARG136, GLN47, THR360 Apigenin 7 O-glucomide -10.095 -55.482 ARG136, TYR38 Phonidzin -9.601 -47.349 ARG136, TYR38 3U20 Prunin -12.715 -54.631 TYR356, PR052(2), ARG136(2), THR360 Luteolin 7 O-glucomide -11.736 -61.162 ARG136(3), PR052 Apigenin 7 O-glucomide -14.443 -65.248 ARG136(2), PR052, TYR356, LEU67 Apigenin 7 O-glucomide -14.478 -59.445 GLN47, ARG136(2) Caftaric acid -10.614 -54.308 LEU67, TYR356, PR052, THR63 Caftaric acid -10.612 -46.071 ARG136, GLN47 Chlorogenic acid -10.614 -54.308 LEU67, HIS41(2) 4JGD Phloridzin -11.510 -53.487 TYR38, THR63, LEU359 Apigenin 7 O-glucomide -10.547 -53.397		Apigenin 7 O-glucornide	-9.950	-54.281	PRO52,LEU42	
Luteolin 7 O-glucomide -11.969 -60.624 ARG136,TYR38 GOU Luteolin 7 O-glucomide -11.029 -53.645 GLN47,PRO52, ARG136 3GOU Luteolin 7 O-glucomide -10.095 -55.482 ARG136,GLN47,THR360 Apigenin 7 O-glucomide -10.095 -55.482 ARG136,TYR38 3U20 Prunin -9.601 -47.349 ARG136,TYR38 3U20 Prunin -12.715 -54.631 TYR356,PRO52(2),ARG136(2),THR360 Luteolin 7 O-glucomide -11.736 -61.162 ARG136(3),PRO52 Apigenin 7 O-glucomide -10.923 -59.133 LEU67,ARG136 3W7R Luteolin 7 O-glucomide -14.443 -55.248 ARG136(2),PRO52,TYR356,LEU67 Apigenin 7 O-glucomide -14.078 -59.445 GLN47,ARG136(2) Caftaric acid -10.614 -54.308 LEU67,TYR356,PRO52,THR63 ZWS Caftaric acid -10.614 -54.308 LEU67,THR360,PRO52 Apigenin 7 O-glucomide -11.210 -55.325 ARG136,THR360,LEU359 JU100 F3.387 LEU67,PR	3GOX	Apigenin 7 O-glucornide	-12.469	-53.739	PRO52,ARG136(2),GLN47	
Prunin -11.029 -53.645 GLN47,PRO52, ARG136 3GOU Luteolin 7 O-glucornide -11.746 -62.255 PRO52,ARG136,GLN47,THR360 Apigenin 7 O-glucornide -10.095 -55.482 ARG136,TYR38 910ridzin -9.601 -47.349 ARG136,TYR38 3U20 Prunin -12.715 -54.631 TYR356,PRO52(2),ARG136(2),THR360 Apigenin 7 O-glucornide -11.736 -61.162 ARG136(3),PRO52 Apigenin 7 O-glucornide -14.443 -65.248 ARG136(2),PRO52,TYR356,LEU67 Apigenin 7 O-glucornide -14.078 -59.433 LEU67,ARG136,C Caftaric acid -11.770 -57.660 LEU67,QL,RG136,THR360,PRO52 ZWS Caftaric acid -10.612 -46.071 ARG136,CLN47 Phloridzin -9.249 -42.920 LEU67,HIS41(2) 4JGD Phloridzin -11.510 -53.487 TYR38,THR63,LEU359 4JS3 Luteolin 7 O-glucornide -10.547 -53.397 LEU67,PRO52 4JS3 Luteolin 7 O-glucornide -10.547 -53.397		Luteolin 7 O-glucornide	-11.969	-60.624	ARG136.TYR38	
3GOU Luteolin 7 O-glucornide -11.746 -62.255 PRO52,ARC136,GLN47,THR360 Apigenin 7 O-glucornide -10.095 -55.482 ARG136,TYR38 Phloridzin -9.001 -47.349 ARG136,TYR38 3U2O Prunin -12.715 -54.631 TYR356,PRO52(2),ARG136(2),THR360 Luteolin 7 O-glucornide -11.736 -61.162 ARG136(3),PRO52 Apigenin 7 O-glucornide -14.443 -55.248 ARG136(2),PRO52,TYR356,LEU67 Apigenin 7 O-glucornide -14.443 -55.248 ARG136(2),PRO52,TYR356,LEU67 Apigenin 7 O-glucornide -14.078 -59.445 GLN47,ARG136(2) Caftaric acid -11.770 -57.660 LEU67,TYR356,PRO52,TYR356,LEU67 SZWS Caftaric acid -10.612 -46.071 ARG136,GLN47 Phloridzin -9.249 -42.920 LEU67,TYR356,PRO52,THR63 Luteolin 7 O-glucornide -11.510 -53.487 TYR38,THR63,LEU359 Luteolin 7 O-glucornide -10.547 -53.397 LEU67,PRO52 4JS3 Luteolin 7 O-glucornide -10.547 -53.397		Prunin	-11.029	-53.645	GLN47.PRO52, ARG136	
Apigenin 7 O-glucornide -10.095 -55.482 ARG136,TYR38 3U20 Prunin -9.601 47.349 ARG136,TYR38 3U20 Prunin -12.715 -54.631 TYR356,PRO52(2),ARG136(2),THR360 Apigenin 7 O-glucornide -11.736 -61.162 ARG136(3),PRO52 Apigenin 7 O-glucornide -14.443 -65.248 ARG136(2),PRO52,TYR356,LEU67 Apigenin 7 O-glucornide -14.443 -65.248 ARG136(2),PRO52,TYR356,LEU67 Apigenin 7 O-glucornide -14.078 -59.445 GLN47,ARG136(2) Caftaric acid -11.770 -57.660 LEU67,TYR356,PRO52,THR360,PRO52 3ZWS Caftaric acid -10.614 -54.308 LEU67,TYR356,PRO52,THR63 Chlorogenic acid -10.612 -46.071 ARG136,CIN47 Phloridzin -11.510 -53.487 TYR38,THR63,LEU359 Luteolin 7 O-glucornide -11.210 -55.325 ARG136,TYR38 Apigenin 7 O-glucornide -10.547 -53.397 LEU67,PRO52 4JS3 Luteolin 7 O-glucornide -10.827 -51.582 PHE62,	3GOU	Luteolin 7 O-glucornide	-11 746	-62.255	PRO52 ARG136 GLN47 THR360	
Phloridzin -9.601 47.349 ARC136,TYR38 3U2O Prunin -12.715 -54.631 TYR356,PRO52(2),ARG136(2),THR360 Luteolin 7 O-glucornide -11.736 -61.162 ARG136(3),PRO52 Apigenin 7 O-glucornide -10.923 -59.133 LEU67,ARG136 3W7R Luteolin 7 O-glucornide -14.078 -59.445 GLN47,ARG136(2) Caftaric acid -11.770 -57.660 LEU67(2),ARG136,DPRO52 ZKS Caftaric acid -10.612 -46.071 ARG136,GLN47 Phloridzin -9.249 -42.920 LEU67,TYR356,PRO52,THR63 -10.612 4JGD Phloridzin -9.249 -42.920 LEU67,HIS41(2) 4JGD Phloridzin -11.510 -53.487 TYR38,THR63,LEU359 Luteolin 7 O-glucornide -10.547 -53.397 LEU67,PRO52 4JS3 Luteolin 7 O-glucornide -10.963 -46.263 TYR38,LEU68 Apigenin 7 O-glucornide -10.827 -51.582 PHE62,LEU68(2),TYR38 Apigenin 7 O-glucornide -11.446 -53.933	2000	Apigenin 7 O-glucornide	-10 095	-55 482	ARG136 TYR38	
3U20 Prunin -1.0.715 -54.631 TYR356,PRO52(2),ARG136(2),THR360 Apigenin 7 O-glucornide -11.736 -61.162 ARG136(3),PRO52 Apigenin 7 O-glucornide -10.923 -59.133 LEU67,ARG136 3W7R Lutcolin 7 O-glucornide -14.443 -65.248 ARG136(2),PRO52,TYR356,LEU67 Apigenin 7 O-glucornide -14.478 -59.445 GLN47,ARG136(2) Caftaric acid -11.770 -57.660 LEU67(2),ARG136,THR360,PRO52 ZWS Caftaric acid -10.614 -54.308 LEU67,TYR356,PRO52,THR63 Chlorogenic acid -10.612 -46.071 ARG136,GLN47 Phloridzin -9.249 -42.920 LEU67,TYR356,PRO52,THR63 Luteolin 7 O-glucornide -11.510 -53.487 TYR38,THR63,LEU359 Luteolin 7 O-glucornide -10.547 -53.397 LEU67,PRO52 JS3 Luteolin 7 O-glucornide -10.963 -46.263 TYR38,LEU68 Apigenin 7 O-glucornide -10.827 -51.582 PHE62,LEU68(2) JTT Luteolin 7 O-glucornide -10.426 -45.420 LEU63(2,TYR38 Apigenin 7 O-glucornide <td< td=""><td></td><td>Phloridzin</td><td>-9 601</td><td>-47 349</td><td>ARG136 TYR38</td></td<>		Phloridzin	-9 601	-47 349	ARG136 TYR38	
5020 Frain 12.735 54.937 Frain 11.000 Luteolin 7 O-glucornide -10.923 -59.133 LEU67, ARG136 3W7R Luteolin 7 O-glucornide -14.443 -65.248 ARG136(2), PRO52, TYR356, LEU67 Apigenin 7 O-glucornide -14.078 -59.445 GLN47, ARG136(2) Caftaric acid -11.770 -57.660 LEU67(2), ARG136, THR360, PRO52 3ZWS Caftaric acid -10.614 -54.308 LEU67, TYR356, PRO52, THR63 Chlorogenic acid -10.612 -46.071 ARG136, GLN47 Phloridzin -9.249 -42.920 LEU67, TYR356, PRO52, THR63 Luteolin 7 O-glucornide -11.510 -53.487 TYR38, THR63, LEU359 Luteolin 7 O-glucornide -11.210 -55.325 ARG136, TYR38 Apigenin 7 O-glucornide -10.547 -53.397 LEU67, PRO52 4JS3 Luteolin 7 O-glucornide -12.228 -54.872 LEU68(2), TYR38 Prunin -10.963 -46.263 TYR38, LEU68 -62.20 Apigenin 7 O-glucornide -10.827 -51.582 PHE62, LEU68(2) -22.20 4JTT <	31120	Prunin	-12 715	-54 631	TYR 356 PR (52(2) ARG136(2) THR 360	
Arienti 7 O-glucornide 11.750 59.133 LEUG7,ARG136 3W7R Luteolin 7 O-glucornide -14.443 -65.248 ARG136(2),PRO52,TYR356,LEU67 Apigenin 7 O-glucornide -14.078 -59.445 GLN47,ARG136(2) Caftaric acid -11.770 -57.660 LEU67(2),ARG136,THR360,PRO52 3ZWS Caftaric acid -10.614 -54.308 LEU67,TYR356,PRO52,THR63 Chlorogenic acid -10.612 -46.071 ARG136,GLN47 Phloridzin -9.249 -42.920 LEU67,HIS41(2) 4JGD Phloridzin -11.510 -53.487 TYR38,THR63,LEU359 Luteolin 7 O-glucornide -11.210 -55.325 ARG136,TYR38 Apigenin 7 O-glucornide -10.547 -53.397 LEU67,PRO52 4JS3 Luteolin 7 O-glucornide -10.547 -53.397 LEU68(2),TYR38 Prunin -10.963 -46.263 TYR38,LEU68 -17.82 Apigenin 7 O-glucornide -10.827 -51.582 PHE62,LEU68(2) 4JTT Luteolin 7 O-glucornide -11.466 -53.933 LEU68(2),TYR38 Apigenin 7 O-glucornide -11.639 <t< td=""><td>5020</td><td>Luteolin 7 O-glucornide</td><td>-11 736</td><td>-61 162</td><td>ARG136(3) PRO52</td></t<>	5020	Luteolin 7 O-glucornide	-11 736	-61 162	ARG136(3) PRO52	
WTR Luteolin 7 O-glucornide 14.443 -65.248 ARG136(2),PRO52,TYR356,LEU67 3W7R Luteolin 7 O-glucornide -14.078 -59.445 GLN47,ARG136(2) Caftaric acid -11.770 -57.660 LEU67,TYR356,PRO52,THR360,PRO52 3ZWS Caftaric acid -10.614 -54.308 LEU67,TYR356,PRO52,THR63 Chlorogenic acid -10.612 -46.071 ARG136,GLN47 Phloridzin -9.249 -42.920 LEU67,HIS41(2) 4JGD Phloridzin -9.249 -42.920 LEU67,PRO52,EWR38 Luteolin 7 O-glucornide -11.510 -53.487 TYR38,THR63,LEU359 Luteolin 7 O-glucornide -10.547 -53.397 LEU67,PRO52 4JS3 Luteolin 7 O-glucornide -10.228 -54.872 LEU68(2),TYR38 Prunin -10.963 -46.263 TYR38,LEU68 Apigenin 7 O-glucornide -11.446 -53.933 LEU68(2),PHE62 4JTT Luteolin 7 O-glucornide -11.446 -53.933 LEU68(2),TYR38 Apigenin 7 O-glucornide -10.682 -45.420		Apigenin 7 O-glucornide	-10 923	-59 133	I FU67 ARG136	
SWAR Function 7 O-glucornide -14.473 -05.246 ARG136(2), RO52, RO52, TR350, ELCO7 Apigenin 7 O-glucornide -11.770 -57.660 LEU67(2), ARG136(, THR360, PRO52 3ZWS Caftaric acid -10.614 -54.308 LEU67, TYR356, PRO52, THR63 Chlorogenic acid -10.612 -46.071 ARG136, GLN47 Phloridzin -9.249 -42.920 LEU67, HIS41(2) 4JGD Phloridzin -11.510 -53.487 TYR38, THR63, LEU359 Luteolin 7 O-glucornide -11.210 -55.325 ARG136, TYR38 Apigenin 7 O-glucornide -10.547 -53.397 LEU67, PRO52 4JS3 Luteolin 7 O-glucornide -12.228 -54.872 LEU68(2), TYR38 Prunin -10.963 -46.263 TYR38, LEU68 Apigenin 7 O-glucornide -11.446 -53.933 LEU68(2), PHE62 4JTT Luteolin 7 O-glucornide -11.446 -53.933 LEU68(2), TYR38 Apigenin 7 O-glucornide -10.682 -45.420 LEU359, PHE62, LEU68, TYR38 Apigenin 7 O-glucornide -10.682 -45.420 LEU67(2), CYR38 Apigenin 7 O-glucornide	3W7P	Luteolin 7 O-glucornide	-14 443	-65 248	ARG136(2) PRO52 TVR356 LEU67	
Apgenin / Orginomide 14.078 -59.443 OL:(47,ARCH30(2)) Caftaric acid -11.770 -57.660 LEU67(2),ARG136,THR360,PRO52 3ZWS Caftaric acid -10.614 -54.308 LEU67,TYR356,PRO52,THR63 Chlorogenic acid -10.612 -46.071 ARG136,GLN47 Phloridzin -9.249 -42.920 LEU67,HIS41(2) 4JGD Phloridzin -11.510 -53.487 TYR38,THR63,LEU359 Luteolin 7 O-glucornide -11.210 -55.325 ARG136,TYR38 Apigenin 7 O-glucornide -10.547 -53.397 LEU67,PRO52 4JS3 Luteolin 7 O-glucornide -10.547 -53.397 LEU68(2),TYR38 Prunin -10.963 -46.263 TYR38,LEU68 Apigenin 7 O-glucornide -10.827 -51.582 PHE62,LEU68(2) 4JTT Luteolin 7 O-glucornide -11.446 -53.933 LEU68(2),PHE62 4JTT Luteolin 7 O-glucornide -10.682 -45.420 LEU359,PHE62,LEU68,TYR38 4JTU Luteolin 7 O-glucornide -10.639 49.430 LEU68(2),TYR36,PRO52 4JTU Luteolin 7 O-glucornide <td< td=""><td>5W/K</td><td>Apigenin 7 O glucornide</td><td>14.078</td><td>59.445</td><td>GI N47 APG136(2)</td></td<>	5W/K	Apigenin 7 O glucornide	14.078	59.445	GI N47 APG136(2)	
3ZWS Cafaric acid -11.770 -57.000 LEU07(2),ARG130,RRO32 3ZWS Cafaric acid -10.614 -54.308 LEU67,TYR356,PRO52,THR63 Chlorogenic acid -10.612 -46.071 ARG136,GLN47 Phloridzin -9.249 -42.920 LEU67,HIS41(2) 4JGD Phloridzin -11.510 -53.487 TYR38,THR63,LEU359 Luteolin 7 O-glucornide -11.210 -55.325 ARG136,TYR38 Apigenin 7 O-glucornide -10.547 -53.397 LEU68(2),TYR38 Prunin -10.963 -46.263 TYR38,LEU68 Prunin -10.963 -46.263 TYR38,LEU68 Apigenin 7 O-glucornide -11.446 -53.933 LEU68(2),TYR38 4JTT Luteolin 7 O-glucornide -11.446 -53.933 LEU68(2),PHE62 4JTT Luteolin 7 O-glucornide -10.682 -45.420 LEU359,PHE62,LEU68,TYR38 Apigenin 7 O-glucornide -10.682 -45.420 LEU68(2),TYR38 -14.078 Apigenin 7 O-glucornide -10.682 -45.420 LEU68(2),TYR38 -14.078 Apigenin 7 O-glucornide -14.078		Caftaric acid	-14.078	-J7.44J 57.660	UL114/,ANUI JU(2) I ELI67(2) ADC126 THD260 DD052	
52.w3 Cataric acid -10.014 -34.308 LEU07,117K356,PK052,1HK63 Chlorogenic acid -10.612 -46.071 ARG136,GLN47 Phloridzin -9.249 -42.920 LEU67,HIS41(2) 4JGD Phloridzin -11.510 -53.487 TYR38,THR63,LEU359 Luteolin 7 O-glucornide -11.210 -55.325 ARG136,TYR38 Apigenin 7 O-glucornide -10.547 -53.397 LEU68(2),TYR38 Prunin -10.963 -46.263 TYR38,LEU68 Apigenin 7 O-glucornide -10.827 -51.582 PHE62,LEU68(2) 4JTT Luteolin 7 O-glucornide -11.446 -53.933 LEU68(2),PHE62 4JTT Luteolin 7 O-glucornide -10.682 -45.420 LEU359,PHE62,LEU68,TYR38 4JTU Apigenin 7 O-glucornide -10.682 -49.430 LEU68(2),TYR38 4JTU Luteolin 7 O-glucornide -10.682 -49.430 LEU68(2),TYR38 4JTU Luteolin 7 O-glucornide -10.682 -49.430 LEU68(2),TYR38 Apigenin 7 O-glucornide -10.682 -49.430 LEU68(2),TYR38, PRO52 Apigenin 7 O-glucornide	27.WS	Cattaric acid	-11.//0	-57.000	LEU07(2),AK0130,111K300,PK032 LEU67 TVD256 DD052 TUD22	
Horogenic acid -10.012 -46.071 ARG130,0EN47 Phloridzin -10.012 -42.920 LEU67,HIS41(2) 4JGD Phloridzin -11.510 -53.487 TYR38,THR63,LEU359 Luteolin 7 O-glucornide -11.210 -55.325 ARG136,TYR38 Apigenin 7 O-glucornide -10.547 -53.397 LEU67,PRO52 4JS3 Luteolin 7 O-glucornide -12.228 -54.872 LEU68(2),TYR38 Prunin -10.963 -46.263 TYR38,LEU68 Apigenin 7 O-glucornide -10.827 -51.582 PHE62,LEU68(2) 4JTT Luteolin 7 O-glucornide -11.446 -53.933 LEU68(2),PHE62 4JTT Luteolin 7 O-glucornide -10.682 -45.420 LEU359,PHE62,LEU68,TYR38 Apigenin 7 O-glucornide -10.682 -45.420 LEU68(2),TYR38 Apigenin 7 O-glucornide -10.639 -49.430 LEU68(2),TYR38 4JTU Luteolin 7 O-glucornide -14.078 -67.862 ARG136(2),TYR356,PRO52 4JTU Luteolin 7 O-glucornide -14.078 -67.862 ARG136(2),TYR356,PRO52 Apigenin 7 O-glucornide -11.460	32.W3	Chlorogonia acid	-10.014	-34.308	LEU07,11K530,FKU32,1HK03	
4JGD Phloridzin -9.249 42.920 LEU01,HIS41(2) 4JGD Phloridzin -11.510 -53.487 TYR38,THR63,LEU359 Luteolin 7 O-glucornide -11.210 -55.325 ARG136,TYR38 Apigenin 7 O-glucornide -10.547 -53.397 LEU67,PRO52 4JS3 Luteolin 7 O-glucornide -12.228 -54.872 LEU68(2),TYR38 Prunin -10.963 -46.263 TYR38,LEU68 Apigenin 7 O-glucornide -10.827 -51.582 PHE62,LEU68(2) 4JTT Luteolin 7 O-glucornide -11.446 -53.933 LEU68(2),PHE62 4JTT Luteolin 7 O-glucornide -10.682 -45.420 LEU68(2),PHE62 4JTU Luteolin 7 O-glucornide -10.639 -49.430 LEU68(2),TYR38 4JTU Luteolin 7 O-glucornide -14.078 -67.862 ARG136(2),TYR356,PRO52 4JTU Luteolin 7 O-glucornide -14.078 -67.862 ARG136(2),TYR356,PRO52 Phloridzin -11.460 -48.299 LEU67,ARG136 Apigenin 7 O-glucornide -14.078 -67.862 ARG136(2),TYR356,PRO52		Chloridzin	-10.012	-40.071	ANU130,ULIN4/ LEU67 HIS41(2)	
4JOD Finoridzin -11.510 -53.487 1YK38,1HK65,LEU359 Luteolin 7 O-glucornide -11.210 -55.325 ARG136,TYR38 Apigenin 7 O-glucornide -10.547 -53.397 LEU67,PRO52 4JS3 Luteolin 7 O-glucornide -12.228 -54.872 LEU68(2),TYR38 Prunin -10.963 -46.263 TYR38,LEU68 Apigenin 7 O-glucornide -10.827 -51.582 PHE62,LEU68(2) 4JTT Luteolin 7 O-glucornide -11.446 -53.933 LEU63(2),PHE62 4JTT Luteolin 7 O-glucornide -10.682 -45.420 LEU359,PHE62,LEU68,TYR38 4JTU Luteolin 7 O-glucornide -10.639 -49.430 LEU68(2),TYR38 4JTU Luteolin 7 O-glucornide -14.078 -67.862 ARG136(2),TYR356,PRO52 4JTU Luteolin 7 O-glucornide -11.460 -48.299 LEU67,ARG136 4JTU Luteolin 7 O-glucornide -11.460 -48.299 LEU67,ARG136	41CD	r IIIOIIUZIII Dhloridain	-9.249	-42.920	$LEU07,\Pi 041(2)$ TVD 28 THD 62 LEU250	
Luteoin / O-glucornide -11.210 -55.325 ARG136,TYK38 Apigenin 7 O-glucornide 10.547 -53.397 LEU67,PRO52 4JS3 Luteolin 7 O-glucornide -12.228 -54.872 LEU68(2),TYR38 Prunin -10.963 -46.263 TYR38,LEU68 Apigenin 7 O-glucornide -10.827 -51.582 PHE62,LEU68(2) 4JTT Luteolin 7 O-glucornide -10.682 -45.420 LEU63(2),PHE62 4JTT Luteolin 7 O-glucornide -10.682 -45.420 LEU68(2),TYR38 4JTU Luteolin 7 O-glucornide -10.639 -49.430 LEU68(2),TYR38 4JTU Luteolin 7 O-glucornide -14.078 -67.862 ARG136(2),TYR356,PRO52 4JTU Luteolin 7 O-glucornide -11.460 -48.299 LEU67,ARG136 Apigenin 7 O-glucornide -11.400 -48.299 LEU67,ARG136	4JGD	Phloridzin	-11.510	-53.48/	1 Y K38, I HK03, LEU339	
Apigenin / O-glucornide 10.54/ -53.39/ LEU6/,PRO52 4JS3 Luteolin 7 O-glucornide -12.228 -54.872 LEU68(2),TYR38 Prunin -10.963 -46.263 TYR38,LEU68 Apigenin 7 O-glucornide -10.827 -51.582 PHE62,LEU68(2) 4JTT Luteolin 7 O-glucornide -10.682 -45.420 LEU39,PHE62 Phoridzin -10.682 -45.420 LEU68(2),TYR38 Apigenin 7 O-glucornide -10.639 -49.430 LEU68(2),TYR38 4JTU Luteolin 7 O-glucornide -10.639 -49.430 LEU68(2),TYR356,PRO52 4JTU Luteolin 7 O-glucornide -11.460 -48.299 LEU67,ARG136 Apigenin 7 O-glucornide -11.460 -48.299 LEU67,ARG136		Luteolin / O-glucornide	-11.210	-55.325	AKU130,TYK38	
4JS3 Luteolin / O-glucornide -12.228 -54.872 LEU68(2),TYR38 Prunin -10.963 -46.263 TYR38,LEU68 Apigenin 7 O-glucornide -10.827 -51.582 PHE62,LEU68(2) 4JTT Luteolin 7 O-glucornide -10.682 -45.420 LEU68(2),PHE62 Phloridzin -10.682 -45.420 LEU68(2),TYR38 Apigenin 7 O-glucornide -10.639 -49.430 LEU68(2),TYR38 4JTU Luteolin 7 O-glucornide -10.639 -49.430 LEU68(2),TYR356,PRO52 4JTU Luteolin 7 O-glucornide -14.078 -67.862 ARG136(2),TYR356,PRO52 Phloridzin -11.460 -48.299 LEU67,ARG136 Apigenin 7 O-glucornide -11.013 -58.578 LEU67,ARG136	4162	Apigenin / O-glucornide	10.547	-53.397		
Prunn -10.963 -46.263 TYR38,LEU68 Apigenin 7 O-glucornide -10.827 -51.582 PHE62,LEU68(2) 4JTT Luteolin 7 O-glucornide -11.446 -53.933 LEU68(2),PHE62 Phoridzin -10.682 -45.420 LEU359,PHE62,LEU68,TYR38 Apigenin 7 O-glucornide -10.639 -49.430 LEU68(2),TYR38 4JTU Luteolin 7 O-glucornide -14.078 -67.862 ARG136(2),TYR356,PRO52 Phloridzin -11.460 -48.299 LEU67,ARG136 Apigenin 7 O-glucornide -11.013 -58.578 LEU67,ARG136	4 J S3	Luteolin / O-glucornide	-12.228	-54.872	LEU68(2),TYR38	
Apigenin 7 O-glucornide -10.827 -51.582 PHE62,LEU68(2) 4JTT Luteolin 7 O-glucornide -11.446 -53.933 LEU68(2),PHE62 Phloridzin -10.682 -45.420 LEU359,PHE62,LEU68,TYR38 Apigenin 7 O-glucornide -10.639 -49.430 LEU68(2),TYR38 4JTU Luteolin 7 O-glucornide -14.078 -67.862 ARG136(2),TYR356,PRO52 Phloridzin -11.460 -48.299 LEU67,ARG136 Apigenin 7 O-glucornide -11.013 -58.578 LEU67,ARG136		Prunin	-10.963	-46.263	TYR38,LEU68	
4JTT Luteolin 7 O-glucornide -11.446 -53.933 LEU68(2),PHE62 Phloridzin -10.682 -45.420 LEU359,PHE62,LEU68,TYR38 Apigenin 7 O-glucornide -10.639 -49.430 LEU68(2),TYR38 4JTU Luteolin 7 O-glucornide -14.078 -67.862 ARG136(2),TYR356,PRO52 Phloridzin -11.460 -48.299 LEU67,ARG136 Apigenin 7 O-glucornide -11.013 -58.578 LEU67,ARG136		Apigenin 7 O-glucornide	-10.827	-51.582	PHE62,LEU68(2)	
Phloridzin -10.682 -45.420 LEU359,PHE62,LEU68,TYR38 Apigenin 7 O-glucornide -10.639 -49.430 LEU68(2),TYR38 4JTU Luteolin 7 O-glucornide -14.078 -67.862 ARG136(2),TYR356,PRO52 Phloridzin -11.460 -48.299 LEU67,ARG136 Apigenin 7 O-glucornide -11.013 -58.578 LEU67,ARG136	4JTT	Luteolin 7 O-glucornide	-11.446	-53.933	LEU68(2),PHE62	
Apigenin 7 O-glucornide -10.639 -49.430 LEU68(2),TYR38 4JTU Luteolin 7 O-glucornide -14.078 -67.862 ARG136(2),TYR356,PRO52 Phloridzin -11.460 -48.299 LEU67,ARG136 Apigenin 7 O-glucornide -11.013 -58.578 LEU67,ARG136		Phloridzin	-10.682	-45.420	LEU359,PHE62,LEU68,TYR38	
4JTU Luteolin 7 O-glucornide -14.078 -67.862 ARG136(2),TYR356,PRO52 Phloridzin -11.460 -48.299 LEU67,ARG136 Apigenin 7 O-glucornide -11.013 -58.578 LEU67,ARG136		Apigenin 7 O-glucornide	-10.639	-49.430	LEU68(2),TYR38	
Phloridzin -11.460 -48.299 LEU67,ARG136 Apigenin 7 O-glucornide -11.013 -58.578 LEU67,ARG136	4JTU	Luteolin 7 O-glucornide	-14.078	-67.862	ARG136(2),TYR356,PRO52	
Apigenin 7 O-glucornide -11.013 -58.578 LEU67,ARG136		Phloridzin	-11.460	-48.299	LEU67,ARG136	
		Apigenin 7 O-glucornide	-11.013	-58.578	LEU67,ARG136	

Table 6: Cross Docking score for 22 different DHODH based PDB Structures.

The **Table 7** below summarizes the cross docking results. It was seen that out of 22 cross docking results Luteolin 7Oglucornide was obtained as the best hit majority of the time (15 times). This was followed by Apigenin 7O- glucornide that was obtained as the second or the third hit majority of the times. These results indicate that Luteolin 7O- glucornide binds consistently with various conformations of human DHODH. The other compounds that were significantly bound to flexible hDHODH were prunin, Phloridzin, apigenin and caftaric acid. Then again caftaric acid did not bind in the same pocket as the other phytomolecules.

Table 7: Frequency of Hits in Cross Docking.

COMPOUND	As 1st HIT	As 2nd HIT	As 3rd HIT
Luteolin 7 O-Glucornide	15	4	1
Apigenin 7 O-Glucornide	2	6	7
Prunin	1	3	4
Phloridzin	1	3	3
Caftaric Acid	2	2	3
Chlorogenic Acid	1	3	5
Apigenin	0	1	0

Cross docking results emphasized on Luteolin 7Oglucornide and Apigenin 7O- glucornide to be significant along with all the previous validation methods used.

MM/GBSA

Any molecular docking experiment should ultimately be extrapolated to its dynamic behavior using molecular simulation. Thus the molecules to be simulated are decided upon by performing free binding energy calculations. MM/GBSA helps to hierarchically list the top best binding molecules of C. halicacabum. MM/GBSA predicted Apigenin 70- glucornide followed by Luteolin 7O- glucornide as compounds having good binding energy compared to other phytocompounds of C. halicacabum. Table 8 gives the Binding free energy and its individual contributions along with the results obtained in Glide XP. The compounds are listed in the hierarchy as obtained from Glide XP. Only two compounds like Apigenin 7O-glucornide) and Luteolin 7O-glucornide (-79.676 Kcal/mol) showed better binding free energy than A771726 while caftaric acid had the lowest dG Bind score (-35.346 Kcal/mol). So out of the 6 top results obtained in Glide and previously employed methods only two compounds had significant dG Bind in Table 8. The lowest score is that of caftaric acid.

MM/GBSA results indicated that the contribution of Vanderwals (vdW) was higher in the top two protein ligand complexes (Apigenin 7O-glucornide and Luteolin 7O- glucornide) compared to the known ligand A771726 (Leflunomide). The vdW affinities were (-60.24, -51.17 and -34.54 Kcal/mol) from former to latter. On comparison of all the attributes predicted by MM/GBSA it was clearly noted that Lipophilic (Lipo) contribution is also a main component for binding affinities with Apigenin 7Oglucornide and Luteolin 7O-glucornide having lipophilic binding energy as -45.16 and -46.98 Kcal/mol resp. compared to -31.02 Kcal/mol for A771726.The other low scoring compounds like caftaric acid showed higher Columbic and solvation energies (-145.9 and -164.23 Kcal/mol respectively). These comparisons prove that good inhibitors show better vdW and Lipophilic contributions compared to non inhibitors. In other words better the lipophilic and Van der Waals interactions, better the binding energy of the inhibitor. Thus based on the MM/GBSA results Apigenin 7 O-glucornide and Luteolin 7O-glucornide were further taken for dynamics studies and compared with standard simulation of A771726 and Apo form of human DHODH protein.

 Table 8: MM/GBSA results for binding free energy of ligand- DHODH receptor complex.

Compound name	Glide score (Kcal/mol)	DG bind (Kcal/mol)	DG_Coul	DG_Vdw	DG_Lipo	SolvGB
~ ~						
Caftaric Acid	-11.286	-35.346	-145.929	-32.969	-21.167	164.233
Luteolin 7	-10.842	-79.676	-39.353	-51.612	-46.986	50.549
Glucornide						
Prunin	-10.109	-73.347	-10.935	-52.610	-51.170	17.005
Chlorogenic	-9.842	-73.314	-40.084	-53.917	-43.140	57.615
acid						
Chryseriol	-9.186	-67.408	-11.885	-38.950	-35.922	13.274
Apigenin 7	-8.213	-80.659	-31.600	-60.246	-45.162	46.341
Glucornide						
A771726	-8.157	-75.449	-16.163	-34.549	-31.026	4.56
Cardiospermin	-8.121	-60.776	-10.441	-31.338	-38.655	13.398

Molecular Dynamics

Four complexes were taken for molecular simulation to evaluate their binding affinities with the human DHODH receptor. The apo form of hDHODH, hDHODH complexed with A771726, hDHODH complexed with Luteolin 7O-glucornide and hDHODH complexed with Apigenin 7O-glucornide was simulated for 10 ns and their RMSD was compared with that of A771726 and apo to check whether the hit compounds show a stable behavior with the receptor which is comparable with A771726 behavior and better than the apo receptor's behavior in a simulated environment of water molecules. The complexed proteins and their starting poses were taken from the cross docking files. Root mean square deviation [RMSD] is best means to measure the native behavior of a molecule in a simulation. Figure 9 shows the comparative plot of RMSD for the 4 receptor complexes. From the graph it was seen that among the 4 simulations, apo receptor showed a higher RMSD than known inhibitor, A771726 by 0.22Å while all the other simulations showed an RMSD closer to 1.5Å which is widely acceptable. This indicates that all the 4 simulations were stable after the 10ns MD simulation.

Table 9: Average RMSD of Receptor complexed with different ligands.

8	1
hDHODH complexed with	Average RMSD
Apo protein	1.59
Luteolin 7O-glucornide	1.53
Apigenin 7O-glucornide	1.52
A771726	1.51

The lowest RMSD was exhibited by Luteolin 70glucornide complex at 1.46 Å. **Table 9** gives the average RMSD values of the receptor with the ligand throughout 10ns MD simulation., it seen that Luteolin 7Oglucornide (1.53Å) and Apigenin 7O-glucornide (1.52Å) are quite steady throughout the 10ns simulation from Table 9. Lower RMSD indicates good dynamics. To understand the stability factor in a better manner the number of H-bonds formed between the hit compounds and receptor during 10ns simulation time was analyzed. The H-bonds analysis (Figure 10) showed that Luteolin 7O-glucornide maintains on an average 2 hydrogen bond with residues like Tyr 356 and additionally interacts with Arg136, Ala55 throughout the whole simulation. Apigenin 7O-glucornide maintains one hydrogen bond with the inhibitor site residues, except from 4000ps to 6000ps where its forms additional 3 H bonds on an average. In this period some water molecules come in closer contact with the inhibitor site thus leading to additional bonds. Apo was not analyzed for H bonds at the inhibitor site. The A771726 receptor complex started with 2 H bonds initially but is initially begun with 2 H-bonds with Arg136 but all the H bond disappeared by the first 1000ps itself which later re-establishes at 5000ps to form partially stable bond with Tyr147 which again disappears over time.

These H-bond interactions clearly indicate that the protein-ligand complexes of the hit compounds are stable and maintained with similar binding mode in the inhibitor site of human DHODH in the MD simulation studies. **Figure 11** shows the RMSF plot of the residues present in the inhibitor binding site. The root mean square fluctuation was the least for Apigenin 70-glucornide with 0.89Å followed by 1.22Å for Luteolin 70-glucornide complex. Apo protein and A771726 complex receptor had 1.33 Å fluctuations. At the 7th ns simulation time all the complexes fluctuate to 6.5Å because of the water molecules intervention.

Figure 12 plots the ROG behavior of the simulated complexes. From the diagram it is quite clear that the radius of Gyration is predictably highest for apo DHODH (20Å) and the lowest for A771726 complex (16 Å). The hits compound complex had an average ROG value of 19Å at the end of 10ns. From MD studies we infer that all hit compounds occupy the active site of human DHODH as known inhibitor, A771726 indicating that the hit compounds have similar bonded and non-bonded interactions.

Fig. 9: RMSD plot for Backbone of Human DHODH docked with different ligands for 10ns.

Fig. 10: Number of Hydrogen bond for (Arg136, Tyr356) of Human DHODH docked with different ligands for 10ns.

Fig. 11: RMSF for (Arg136, Tyr356) of hDHODH docked with different ligands for 10ns.

Fig. 12: ROG plot for Backbone of hDHODH docked with different ligands for 10ns.

DISCUSSION

C. halicacabum is a traditional medicinal plant used mainly for arthritis pain. It is widely known for its anti inflammatory properties in inflammatory diseases. The Leaf compounds were corroborated as influencing the interleukins and nitric oxide synthase to deplete the inflammation response (Sheeba and Asha, 2009). However, the target protein as well as the active compounds with anti-inflammatory profile is still unknown. Rheumatoid arthritis is an inflammatory disease where joints and cartilages progressively diminish and cause pain. Among the different targets that are widely used to reduce chronic inflammation, human DiHydroOrotate Dehydrogenase is widely studied. This target is inhibited by a special class of drugs called Disease Modifying Anti Rheumatic Drug [DMARD]. Currently, many studies are performed to seek out valid alternatives to the drugs available that are practically amenable for long term usage. This precisely is the driving force behind our study. The phytocompounds of C. halicacabum were screened, docked and simulated against hDHODH to evaluate the possible inhibitory effects of these compounds on hDHODH.

The 19 compounds in the leaf of *C. halicacabum* were used to screen a validated E pharmacophore specific for an inhibitor of hDHODH. The 5 hits obtained though not of a very high fitness score indicate that desirable features of a good inhibitor of hDHODH are present in the phytocompounds of C. halicacabum. Further the phytocompounds were docked with the receptor of hDHODH to obtain 9 hits having a XP Gscore better than the known inhibitor of hDHODH - A771726. The top hit caftaric acid interacted in a pocket deeper than the known inhibitor site. Caftaric acid although gave very high score of -11.56 Kcal / mol, bound to a FMN binding site rather than the A771726 binding site. This could have serious repercussions as hDHODH is a 2 site catalytic enzyme for both orotate as well as ubiquinone reduction. Thus the binding of caftaric acid to a different site can cross react with oxidative phosphorylation process. The active site residues Arg136 and Tyr356 and the surrounding 3Å amino acids were the main binding site for all the other hits mainly apigenin 7O-glucornide and Luteolin 7O- glucornide, chlorogenic acid and pruning. The compounds obtained were checked for its credibility by applying additional validation tests like varying docking algorithms, docking with decoys and with other known inhibitors of hDHODH. Further a flexible ligand receptor docking protocol was performed using crossdocking of other known crystal structures of hDHODH to find a lead ligand and its conformational pose.

Thus multiple cross dockings showed majority of the times Luteolin 7O-glucornide as the best hit followed by Apigenin 7O-glucornide. The poses of the cross docked receptor along with the ligand were taken as the starting structure for dynamics. The simulation time of 10ns was used so as to get an initial preview on the type of interactions and the forces that act against the receptor ligand interactions. Among four complexes simulated, the apo protein had a high RMSD value of 1.59Å compared to the other 3 complexes. The lead compounds Luteolin 7O-glucornide and Apigenin 7O- glucornide complexed receptor were comparable and equally good as the known inhibitor A771726 (1.53, 1.52. 1.51 Å resp.) Similar study of this kind has been used to find inhibitors to benign prostatic hyperplasia (Wang *et al.*, 2014) and Low Density Lipoprotein formation (Jiang *et al.*, 2016).Our results indicate that the leaf compounds Luteolin 7O-glucornide and Apigenin 7O- glucornide are the principal ingredients of *C. halicacabum* that alleviate that disease of Rheumatoid arthritis by acting on the pyrimidine pathway target of hDHODH. Further, enzyme inhibition studies are warranted.

CONCLUSION

A study to find novel inhibitors for hDHODH was done using E- pharmacophore screening, cross docking and molecular dynamics. All the validations and simulations performed on the complex of hDHODH with the lead-like compounds Luteolin 7Oglucornide and Apigenin 7O-glucornide resulted in giving a broad idea on the type of interactions that may occur between C. halicacabum leaf compounds and the target hDHODH. This study also provides a foundation for efficiency studies of C. halicacabum against a target of Rheumatoid arthritis. The study helps to spell out active ingredients in C. halicacabum leaf that may further be used for treatment of Rheumatoid arthritis. Thus Luteolin 7O-glucornide and Apigenin 7O-glucornide can be shortlisted as lead compounds which can be optimized for stability. Alternately, our study can be used as a starting point for exploring an alternate mechanism of action of the leaves of C. halicacabum against inflammatory targets like hDHODH.

Acknowledgement

We the authors acknowledge SRM University and the facilities provided by the college for the successful completion of work.

Financial support and sponsorship: Nil.

Conflict of Interests: There are no conflicts of interest.

REFERENCES

Babu K and Krishnakumari S. Anti-inflammatory and antioxidant compound, rutin in *Cardiospermum halicacabum* leaves. Anc Sci Life, 2005; 25: 47.

DeLeve L and Kaplowitz N. 2013. Drug-induced liver disease. Academic, Oxford.

Du J, Sun H, Xi L, Li J, Yang Y and Liu H *et al.* Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and prime/MM-GBSA calculation. J Comp Chem, 2011; 32: 2800-2809.

Eldridge M, Murray C, Auton T, Paolini G and Mee R. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput-Aided Mol Des, 1997;11: 425-445. Fox R, Herrmann M, Frangou C, Wahl G, Morris R and Strand V *et al.* Mechanism of Action for Leflunomide in Rheumatoid Arthritis. J Clin Immunol, 1999; 93: 198-208.

Fritzson I, Svensson B, Al-Karadaghi S, Walse B, Wellmar U and Nilsson U. *et al.*. Inhibition of Human DHODH by 4-Hydroxycoumarins, Fenamic Acids, andN-(Alkylcarbonyl)anthranilic Acids Identified by Structure-Guided Fragment Selection. ChemMedChem, 2010; 5: 608-617.

Ganesan K, Sehgal P, Mandal A and Sayeed S. Protective Effect of Withania somnifera and *Cardiospermum halicacabum* Extracts Against Collagenolytic Degradation of Collagen. *Appl Biochem Biotech*, 2011; 165: 1075-1091.

Govindarajan M and Sivakumar R. Repellent properties of *Cardiospermum halicacabum* Linn. (Family: Sapindaceae) plant leaf extracts against three important vector mosquitoes. Asian Pac J Trop Biomed, 2012; 2: 602-607.

Hsu K, Chen Y, Lin S and Yang J. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 2011;12: S33.

Huang M, Huang S, Wang B, Wu C, Sheu M and Hou W. *et al.* Antioxidant and anti-inflammatory properties of *Cardiospermum halicacabum* and its reference compounds ex vivo and in vivo. J Ethnopharmacol, 2011; 133: 743-750.

Jeyadevi R, Sivasudha T, Ilavarasi A and Thajuddin N. Chemical Constituents and Antimicrobial Activity of Indian Green Leafy Vegetable *Cardiospermum halicacabum*. Indian J Microbiol, 2012; 53: 208-213.

Jeyadevi R, Sivasudha T, Rameshkumar A and Dinesh Kumar L. Anti-arthritic activity of the Indian leafy vegetable *Cardiospermum halicacabum* in Wistar rats and UPLC–QTOF–MS/MS identification of the putative active phenolic components. Inflamm Res, 2012; 62: 115-126.

Jiang L, He Y, Luo G, Yang Y, Li G and Zhang Y. Discovery of potential novel microsomal triglyceride transfer protein inhibitors via virtual screening of pharmacophore modelling and molecular docking. Mol Simul, 2016; 42: 1223-1232.

Jorgensen W. The Many Roles of Computation in Drug Discovery. Science, 2004; 303: 1813-1818.

Karplus M and McCammon J. Molecular dynamics simulations of biomolecules. Nat Struct Biol, 2002; 9: 646-652.

Kirchmair J, Göller A, Lang D, Kunze J, Testa B and Wilson I *et al.* Predicting drug metabolism: experiment and/or computation?. Nat Rev Drug Discov, 2015; 14: 387-404.

Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R and Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput-Aided Mol Des, 2013; 27: 221-234.

Marrone T, Briggs J and McCammon J. Structure-Based Drug Design:Computational Advances. Annu Rev Pharmacol Toxicol, 1997; 37: 71-90.

Munier-Lehmann H, Vidalain P, Tangy F and Janin Y. On Dihydroorotate Dehydrogenases and Their Inhibitors and Uses. J Med Chem, 2013; 56: 3148-3167.

Nicola G, Liu T, Hwang L and Gilson M. BindingDB: A Protein-Ligand Database for Drug Discovery. Biophys J, 2012; 102: 61a.

Pillai N and Santhakumari G. Anti-Arthritic and Anti-Inflammatory Actions of Nimbidin. Planta Med, 1981; 43: 59-63.

Qi Q, Lu X, Li Y, Fan Y and Zhu J. F01WB-1315 A and B, two dihydroorotate dehydrogenase inhibitors from microbial metabolites. Wei sheng wu xue bao= Acta microbiologica Sinica, 2009; 49: 485-491.

Raza A. Review of beneficial and remedial aspects of *Cardiospermum halicacabum* L. Afr J Pharm Pharmacol, 2013; 7: 3026-3033.

Sadique J, Chandra T, Thenmozhi V and Elango V. Biochemical modes of action of Cassia occidentalis and *Cardiospermum halicacabum* in inflammation. J Ethnopharmacol, 1987; 19: 201-212.

Sheeba M and Asha V. *Cardiospermum halicacabum* ethanol extract inhibits LPS induced COX-2, TNF- α and iNOS expression, which is mediated by NF- κ B regulation, in RAW264.7 cells. J Ethnopharmacol, 2009; 124: 39-44.

Sotriffer C. Virtual screening, 1st ed. Wiley-VCH, 2011; Weinheim, Germany.

Swaminathan P, Kalva S and Saleena L. E-Pharmacophore and Molecular Dynamics Study of Flavonols and Dihydroflavonols as Inhibitors Against DiHydroOrotate DeHydrogenase. Comb Chem High Throughput Screen, 2014; 17: 663-673.

Totrov M and Abagyan R. Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol, 2008; 18: 178-184.

Triballeau N, Acher F, Brabet I, Pin J and Bertrand H. Virtual Screening Workflow Development Guided by the "Receiver Operating Characteristic" Curve Approach. Application to High-Throughput Docking on Metabotropic Glutamate Receptor Subtype 4. J Med Chem, 2005; 48: 2534-2547.

Veeramani C, Al-Numair K, Alsaif M, Chandramohan G, Al-Numair N and Pugalendi K. Protective effect of *Cardiospermum halicacabum* leaf extract on glycoprotein components on STZ–induced hyperglycemic rats. Asian Pac J Trop Med, 2012; 5: 939-944.

Venkatachalam C, Jiang, X, Oldfield T, and Waldman M. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model, 2003; 21: 289-307.

Venkatesh B and Krishnakumari S. *Cardiospermum halicacabum* suppresses the production of TNF-alpha and nitric oxide by human peripheral blood mononuclear cells. Afr J Biomed Res, 2009; 9.

Vyas V. Virtual Screening: A Fast Tool for Drug Design. Sci Pharm, 2008; 76: 333-360.

Wang J, Liu H, Zhou Z, Chen W and Ho Y. Discovery of novel 5α -reductase type II inhibitors by pharmacophore modelling, virtual screening, molecular docking and molecular dynamics simulations. Mol Simul, 2014; 41: 287-297.

Zalke AS, Duraiswamy B, Gandagule UB, Singh N. Pharmacognostical evaluation of *Cardiospermum halicacabum* Linn. Anc Sci Life. 2013l; 33(1):15-21

How to cite this article:

Swaminathan P., Saleena L. Evaluation of *Cardiospermum halicacabum* leaf compounds against human DihydroOrotate Dehydrogenase- a target for Rheumatoid Arthritis using Structure based Drug Designing. J App Pharm Sci, 2017; 7 (08): 048-061.