Median lethal dose (LD50) and cytotoxicity of Adriamycin in female albino mice

Rehab M. Mosaad¹, Amany Samir¹, Hassan M. Ibrahim²*

¹Lecturer at Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
²Researcher at Textile Research Division, National Research Centre, 33 El Bohouth st. (Former El Tahrir St.), Dokki, Giza, Egypt.

ABSTRACT

The median lethal dose of Adriamycin and its cytotoxicity in three vital organs (heart, liver and kidney) was studied. The median lethal dose (LD50) was 56.875mg/kg body weight. High doses of Adriamycin induced significant increases in heart tissues enzymes (lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and Creatine Kinase-MB isoenzyme (CKMB)). Hepatotoxicity appeared in significant increment in liver function enzymes (aspartate aminotransferase (AST) and Alanine aminotransferase (ALT) activities) and lipid profile (cholesterol and triglycerides) and significant reduction in total protein and albumin. Moreover, urea and creatinine have recorded significant increases in kidney tissues after intraperitoneal administration of high doses of Adriamycin (100, 90 and 80 mg/kg b.wt.).

INTRODUCTION

Adriamycin is a quinine containing anticancer and antibiotic that is used to treat many solid malignancies and lymphomas (Quiles et al., 2002). Adriamycin have severe toxic effects towards heart, kidney and liver so that its clinical efficacy is restricted (Quiles et al., 2002; Chae et al., 2005; Kim et al., 2006; Zahraei and Rabbani-Chadegani, 2007; Othman et al., 2008). The toxicity effect of Adriamycin on heart and liver are condensation, myofibrils, mitochondrial swelling and loss disruption in heart and lipid droplets accumulation, polymorphic mitochondria, and vacuolization of cytoplasm in liver. A nephrotic syndrome induced by a single high-dose injection of Adriamycin (ADR). Heavy proteinuria, hypoalbuminemia, hypercoagulability, and hyperlipemia with hypercholesterolemia were used to characterize ADR (Deepa and Varalakshmi, 2005b).

Many mechanisms are consider to illustrate the cytotoxic effects of Adriamycin such as inhibition of DNA synthesis, alkylation and binding of DNA, interference of DNA strand separation and helicase activity, effects of direct membrane, cross-linking of lipid peroxidation DNA and free radical formation (Deepa and Varalakshmi, 2006).

The aim of the present study is to determine the (Median lethal dose) LD₅₀ of Adriamycin intraperitoneal injection and cytotoxicity of 80, 90, and 100 mg/kg b.wt. in female albino mice.

MATERIAL AND METHODS

Experimental animals

84 adult female albino mice were obtained from the animal house, veterinary division, NRC. Their weights ranged between (20 and 30 g). Mice were housed in plastic cages, each cage contained eight mice. Animals were kept under controlled temperature of 25 ± 2 °C for 12 hours under light and 12 hours dark cycle throughout the experiment. A commercial pelleted diet was used during the experiment. Food and water were available ad libitum.
Drugs
Adriamycin as Adrin is purchased from EIMC United Pharmaceuticals, Badr City, Cairo, A.R.E.

Treatment and dosage
An approximate LD50 was initially determined in pilot study by a so called “staircase method” using a small number of animals (2 for each dose) with increasing doses of Adriamycin. Five doses of 80, 90, 100, 110 and 120 mg/kg b.wt., were given to 5 groups of mice (8 in each) for the determination of intraperitoneal LD50 in female mice (Table 1).

Animals were observed for the 2, 6 and 24 hours for any toxic symptoms. After 24 hours, number of died animals was counted in each group and transformed to probits and then LD50 determined by the method of Karber (Shetty Akhila and Alwar, 2007). The cytotoxicity of 80, 90 and 100 mg/kg b.wt., was determined in three tissues (heart, Liver and kidney).

Determination of biochemical parameters:
After 24 hrs the surviving animals were quickly sacrificed by decapitation and heart, liver and kidney organs were collected for determination of the biochemical parameters. The organs were weighed and homogenized in 10 m mol/L phosphate buffer saline (10% W/V) of pH 7.4 and centrifuged. The supernatant used for determination of LDH, ALP, CKMB in heart tissues, ALT, AST, TP, albumin, cholesterol, triglycerides in liver tissues and creatinine in kidney tissues.

In heart tissue, lactate dehydrogenase (LDH) was determined according to (Young, 2000; Young and Friedman, 2001) and ALP was measured according to (Belfield and Goldberg, 1971) while creatine kinase-MB isoenzyme (CKMB) was measured in heart according to (Stein, 1998). Aspartate aminotransferase (AST) and Alanine aminotransferase (ALT) activities in liver tissue were measured spectrophotometrically according to the method of (Murray, 1984; Murray, 1989). Total Protein concentration was measured by the method of (Gornall et al., 1949). Albumin levels were measured according to the method of (Doumas et al., 1971). The measurement of triglycerides levels using assay kit according to (Fossati and Prencipe, 1982) and cholesterol was measured according to (Richmond, 1973; Allain et al., 1974). Moreover, urea content was performed in kidney tissue according to the procedure of (Fawcett and Scott, 1960) and creatinine concentration measured according to (Schirmeister et al., 1964).

Statistical analysis:
Reported values for liver, heart and kidney parameters represented in the table 2 expressed as means ± SE. Statistical analysis evaluated by one-way ANOVA. Once a significant F test obtained, LSD comparisons performed to assess the significance of differences among various treatment groups. Statistical Processor System Support “SPSS” for Windows software, Release 12.0 (SPSS, Chicago, IL) was used.

RESULTS AND DISCUSSION
Among the treated animals with high doses of Adriamycin, it was found that some animals were died immediately after few seconds. But the rest of the treated animals were drowsy and less responsive. The severity of these effects were related to the dose concentration. However, few numbers of survivors had recovered from these symptoms after 24 hours.

<table>
<thead>
<tr>
<th>group</th>
<th>Dose mg/kg</th>
<th>No. of animal dead</th>
<th>dose difference (a)</th>
<th>mean mortality (b)</th>
<th>probity (a×b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>2</td>
<td>10</td>
<td>1.5</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>4</td>
<td>10</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>110</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>80</td>
</tr>
</tbody>
</table>

LD50 = the apparent least dose lethal to all in a group- sum (a*b)/n
Where n is the number of animals in each group, (a) is the dose difference and (b) is the mean mortality = mortality in second group +1st group / 2 (Table 1)

LD50 = 80-185/8 = 80-23.125=56.875 mg/kg b.wt.

The LD50 of Adriamycin in adult female mice was found to be 56.875 mg/kg b.wt. after intraperitoneal injection (Table 1).

Adriamycin, is anthracycline isolated Streptomycyes, used as antibiotic and antitumor (Eliaz et al., 2004; Al-Ghamdi, 2008). Waldemar et al. (1993) indicated that LD50 of Adriamycin was 25.7 mg/kg. While, the LD50 reported by Bertezzoli et al. (1985) was 11.98 mg/kg in mice treated intraperitoneally. Also, (Kratz et al., 2007) indicted that the LD50 of intravenous administration of Adriamycin in CD-1 mice was 12 mg/kg, while it was 23.4 and 45.9 mg/kg for males and females Sprague Dawley rats respectively.

A single dose of the encapsulated form of Adriamycin was less toxic (LD50 of 32 mg/kg) than free Adriamycin (LD50 of 17 mg/kg). In addition, The LD50 of Adriamycin hydrochloride nanoliposome was 31.69 mg/kg in kuming mice (Xie et al., 2013). This difference in the reported results might be due to rout of administration, animal sex, method used for the estimation of LD50 and different derivative of Adriamycin.

Adriamycin as antibiotic and anticancer was successful in solid tumors, lymphomas and leukaemia’s treatment (Pal and Sil, 2012; Elsherbiny and El-Sherbiny, 2014). The therapeutic efficacy of Adriamycin have been severely limited by the toxic side effects of the drug on heart as well as other organs including the liver, heart, brain and kidney (Elsherbiny and El-Sherbiny, 2014; Wang et al., 2014).

The data in this study present the effect of i.p. administration of three acute doses (80, 90 and 100 mg/kg b.wt.) of Adriamycin on heart, liver and kidney functions of female albino mice after 24 hrs of one dose injection.

In our study, Adriamycin produced significant increases in heart tissues lactate dehydrogenase, alkaline phosphatase and Creatine Kinase-MB isoenzyme (CKMB) (Table 2).
Ibrahim et al. (2009) examined the effect of accumulative Adriamycin dose (15 mg/kg) and they found a significant rise in LDH and CK-MB enzyme activities which act as important markers of heart disease (Ibrahim et al., 2009).

There are several mechanisms that illustrate cardiotoxicity results from Adriamycin, including membrane lipid peroxidation, mitochondrial damage, free radical generation, lipid peroxidation (LPO), and iron-dependent oxidative damage to macromolecules (Singh et al., 2015). There are significant rise in malondialdehyde level (MDA) accompanied with glutathione (GSH) activity inhibition in heart followed by the activity of catalase (CAT) with a significant elevation in lactate dehydrogenase (LDH) and aspartate transaminase (AST) (Nazmi et al., 2013).

Adriamycin myocardial impairment involve myocyte apoptosis via oxidative free radical formation (Deepa and Varalakshmi, 2006). Also Adriamycin increase radicals of superoxide and NO in heart tissue then form toxic free radicals their (Prahalathan et al., 2005).

Adriamycin cancer impair normal liver by generating oxidative stress, decreases in the antioxidation capacity of the liver and the liver weight (Wang et al., 2014).

In the present study, Adriamycin induced significant increases (p<0.05) in liver tissues enzymes (ALT and AST) and significantly decreases in liver total protein and albumin contents. In addition, the treatment of single different doses of Adriamycin showed significant increases in liver triglycerides and cholesterol contents (Table 2).

Table 2: Effect of i.p. administration of single dose Adriamycin(80, 90 and 100 mg/kg b.wt.) on the heart, liver and kidney functions of female albino mice

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Adriamycin (80 mg/kg b.wt.)</th>
<th>Adriamycin (90 mg/kg b.wt.)</th>
<th>Adriamycin (100 mg/kg b.wt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDH U/g tissue</td>
<td>1.61±0.036</td>
<td>3.389±0.125a</td>
<td>5.45±0.104ab</td>
<td>4.77±0.168ab</td>
</tr>
<tr>
<td>Alk. U/g tissue</td>
<td>0.062±0.002a</td>
<td>0.172±0.006a</td>
<td>0.271±0.005ab</td>
<td>0.252±0.016ab</td>
</tr>
<tr>
<td>CKMB U/g tissue</td>
<td>2.28±0.079</td>
<td>4.414±0.171a</td>
<td>5.71±0.236ab</td>
<td>5.667±0.246ab</td>
</tr>
<tr>
<td>ALT U/g tissue</td>
<td>0.0149±0.0004</td>
<td>0.232±0.010a</td>
<td>0.255±0.011a</td>
<td>0.349±0.015abc</td>
</tr>
<tr>
<td>AST U/g tissue</td>
<td>0.065±0.003</td>
<td>0.244±0.028a</td>
<td>0.30±0.030a</td>
<td>0.436±0.008ab</td>
</tr>
<tr>
<td>TP mg/g tissue</td>
<td>6.05±0.195</td>
<td>3.198±0.170a</td>
<td>2.799±0.173</td>
<td>2.12±0.145</td>
</tr>
<tr>
<td>Album. mg/g tissue</td>
<td>14.28±0.701</td>
<td>10.67±0.173a</td>
<td>9.16±0.278a</td>
<td>7.22±0.163ab</td>
</tr>
<tr>
<td>TG mg/g tissue</td>
<td>11.86±0.386</td>
<td>25.20±0.410a</td>
<td>25.15±0.481a</td>
<td>26.06±1.316a</td>
</tr>
<tr>
<td>Chol. mg/g tissue</td>
<td>125.57±3.782</td>
<td>211.76±6.646a</td>
<td>496.45±17.55ab</td>
<td>406.89±11.260abc</td>
</tr>
<tr>
<td>Urea mg/g tissue</td>
<td>0.42±0.016</td>
<td>0.55±0.019a</td>
<td>0.58±0.019a</td>
<td>0.59±0.019</td>
</tr>
<tr>
<td>Creat. mg/g tissue</td>
<td>0.16±0.006</td>
<td>0.238±0.100a</td>
<td>0.374±0.011a</td>
<td>0.375±0.05ab</td>
</tr>
</tbody>
</table>

Values are means of 8 mice ± SE. in group (1), 7 mice ± SE in group (2), 6 mice ± SE in group (3) and means of 4 rats ± SE in group (4) a = significant change from control, b = significant change from Adriamycin (80 mg/kg) rats and c = significant change from Adriamycin (90 mg/kg) rats at p < 0.05.

In kidney tissues, the data showed significant increases in urea and creatinine content after the treatment with 15 mg/kg Adriamycin i.p. single dose for 5 days, which cause renal toxicity (El-Moselhy and El-Sheikh, 2014). Repeated injection doses from Adriamycin lead to renal dysfunctions involving elevation in levels of urea and creatinine in blood and albumin in urine which attributed to oxidative stress mechanisms (Elsherbiny and El-Sherbiny, 2014). Also, Adriamycin induced renal toxicity was monitored in kidney via increase in MDA and decrease in GSH levels (Ibrahim et al., 2009; Nazmi et al., 2013). Decreases in GSH cause cellular electrolytes disrupt which lead to renal dysfunctions and renal toxicity (Pal and Sil, 2012). The high levels of oxygen free radicals produced by Adriamycin metabolism cause pathologic alterations in kidneys including, increased level of lipid peroxidation products and apoptosis (Dziewiet al., 2002; Chmielewska et al., 2015).

CONCLUSION

In this paper, the median lethal dose (LD50) and cytotoxicity of Adriamycin were evaluated in female albino mice. The median lethal dose was 56.875 mg/kg. Cytotoxicity of 80, 90 and 100 mg/kg were examined by the biochemical analysis of heart, liver and kidney tissues. After 24 hrs of one dose, the data recorded sever effects as significant changes in heart and liver enzymes, hepatic total protein and albumin, hepatic lipid profile and kidney function.

ACKNOWLEDGEMENT

The authors gratefully acknowledges National Research Centre, for financial support and for facilities provided through project ID: 10050309.

Conflict of Interests: There are no conflicts of interest.

REFERENCES


Deepa P and Varalakshmi P. Beneficial cardio-renovascular effects of a low-molecular-weight heparin-derivative on adriamycin-induced glycosaminoglycanuria and tissue lipid abnormalities. Toxicology, 2005a; 211 (1): 77-85.


Deepa P and Varalakshmi P. Influence of a low-molecular-weight heparin derivative on the nitric oxide levels and apoptotic DNA damage in adriamycin-induced cardiac and renal toxicity. Toxicology, 2006; 217 (2): 176-183.


Othman AI, El-Missiry MA, Amer MA and Arafa M. Melatonin controls oxidative stress and modulates iron, ferritin, and transferrin levels in adriamycin treated rats. Life sciences, 2008; 83 (15): 563-568.

Pal S and Sil PC. A 43 kD protein from the leaves of the herb Cajanus indicus L. modulates doxorubicin induced nephrotoxicity via MAPKs and both mitochondria dependent and independent pathways. Biochimie, 2012; 94 (6): 1356-1367.


Young DS. 2000. Effects of drugs on clinical laboratory tests. AACC press.

Young DS and Friedman RB. 2001. Effects of disease on clinical laboratory tests. 2. Listing by disease. AACC-Press.