
 

© 2017 S. M. Zahid Hosen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-

ShareAlikeUnported License (http://creativecommons.org/licenses/by-nc-sa/3.0/). 

 

 
 
Journal of Applied Pharmaceutical Science Vol. 7 (01), pp. 120-128, January, 2017 
Available online at http://www.japsonline.com 
DOI: 10.7324/JAPS.2017.70116 

ISSN 2231-3354    

 

In silico ADME/T and 3D QSAR analysis of KDR inhibitors  

 
S. M. Zahid Hosen

1
*, Raju Dash

1
, Mahmuda Khatun

1
, Rasheda Akter

1
, Md. Habibur Rahman Bhuiyan

2
, Md. Rezaul 

Karim
3
, Nusrat Jahan Mouri

4
, Forkan Ahamed

5
, Kazi Saiful Islam

6
, Sadia Afrin

7 

 
1
Molecular Modeling & Drug Design Laboratory (MMDDL), Pharmacology Research Division, Bangladesh Council of Scientific & Industrial Research 

(BCSIR), Chittagong-4220, Bangladesh. 
2
Industrial Microbiology Research Division, Bangladesh Council of Scientific & Industrial Research (BCSIR), 

Chittagong-4220, Bangladesh. 
3
Institute of Food Science & Technology (IFST), BCSIR, Dhaka. 

4
Industrial Botany Research Division, Bangladesh Council 

of Scientific & Industrial Research (BCSIR), Chittagong-4220, Bangladesh. 
5
Department of Microbiology, Faculty of Biological Science, University of 

Chittagong, Chittagong, Bangladesh. 
6
Charles Perkins Center-University of Sydney, NSW 2050, Australia. 

7
Department of Nutritional Biochemistry, 

ICDDR, B, Dhaka 1212, Bangladesh. 
 

 

 
 

 

ARTICLE INFO 
 
 

 

ABSTRACT 

 

Article history: 

Received on: 16/08/2016 

Revised on: 17/09/2016 

Accepted on: 30/09/2016 

Available online: 31/01/2017 
 

 
 
 
 
 
 
 
 

 
 

 

Tyrosine kinases (KDR) have been considered as a potential targets for the design of new anticancer agents. 

Recently, a series of N-4-chlorophenylnaphthamides has been reported with KDR inhibitory activity. In order to 

demonstrate the pharmacokinetics and the relationship between the structures and their inhibition of KDR, 3D-

QSAR and in silico ADME/T analysis were performed on a dataset of 13 compounds. Quantum chemical 

parameters such as LUMO energy, HOMO energy, ionization energy (I), electron affinity (A), chemical 

potential (μ), hardness (η) and electrophilicity (χ) of the compounds are calculated by using semi-empirical 

SCF-MO method at PM3 level of theory and various SlogP descriptors from MOE software. In silico ADME/T 

analysis was performed by using different software’s Discovery Studio 2.5, TOPKAT and QikProp 4.3. From in 

silico ADME and Toxicity studies, it was revealed that selected derivatives have good oral absorption rate and 

metabolism with no BBB penetration. QSTR (Quantitative Structure Toxicity Relationship) studies by using 

TOPAK in various computational animal models, showed high LD50 values and the compounds are found to be 

noncarcenogenic. Moreover, three different QSAR models were generated by Partial Least Squares (PLS) 

Regression method having correlation coefficient (Q
2
) of 0.86382, 0.84372, and 0.82629, respectively.  These 

models conclude a significant relationship of KDR inhibition with dipole moment (D), LUMO energy (ELUMO), 

hardness (η) and electrophilicity (χ), and hydrophobicity of compounds, regarding N-4-

chlorophenylnaphthamides. 
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INTRODUCTION 
 

New blood vessels formation from existing vasculature 

is termed as angiogenesis, a crucial pathway for tissue repair, 

growth and embryogenesis (Cherrington et al., 2000, Ferrara, 

2002, Harmange et al., 2008) and associated with different types 

of pathological processes which include metastasis (Liotta et al., 

1991), tumor growth (Folkman, 1972), psoriasis (Detmar, 2000), 

ocular neovascularization (Aiello et al.,  1994), rheumatoid           
.  
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arthritis (Walsh and Haywood, 2001), inflammation (Fava, 1994). 

Vascular endothelial growth factor (VEGFa) and its receptor 

tyrosine kinases VEGFR-2 or kinase insert domain receptor (KDR) 

and VEGFR-1 were reported as key regulators for angiogenesis 

(Terman et al., 1992). Briefly, downstream pathways are initiated 

by the accumulation of receptor dimerization and intercellular 

autophosphorylation, when VEGF binds with its receptor 

VEGFRs. As a corollary, vascular permeability, endothelial cell 

proliferation, survival and migration are increased and resulted in 

tumor growth and metastasis (Kilari et al., 2013; Quentmeier et al., 

2012). Moreover, excessive expression of VEGFR is related to the 

poor prognosis and aggressiveness of the tumor in most of the 

cancers and therefore, inhibition of KDR-VEGF binding activity is  

http://creativecommons.org/licenses/by-nc-sa/3.0/
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one of the major strategies in cancer drug development (Li et al., 

2016). Some successful strategies to inhibit the angiogenesis have 

been effectively expressed in preclinical and clinical layout. These 

approaches include VEGF soluble decoy receptors (Cardones and 

Banez, 2006), antibodies directed against VEGF (D'Adamo et al., 

2005), and small molecules that inhibit KDR (Adjei, 2007; Beebe 

et al., 2003; Gingrich et al., 2003; Harmange et al., 2008; 

Hennequin et al., 2002; Ruggeri et al., 2003; Ryan and Wedge, 

2005; Sun et al., 2003; Thomas et al., 2003). From these 

observations and ever increasing demands of these biological 

active KDR inhibitors, we subjected some novel N-4-

chlorophenylnaphthamide based KDR inhibitors to study their 

QSAR and QSTR profiles. 

The approach are used based on the popular quantum 

based drug design methodologies to describe the ADME/T profiles 

and activity by taking some quantum chemical parameters 

including dipole moment (D), LUMO energy (ELUMO), hardness 

(η) and electrophilicity (χ), along with hydrophobic descriptor 

SLogP.  

 

MATERIALS AND METHODS 

 

Dataset preparation 

Thirteen N-4-chlorophenylnaphthamides with KDR 

inhibitory activity were used in systemic ADME/T and QSAR 

analysis are represented in Table 1. The molecules were drawn in 

Symyx Drawer and then subjected to generate 3D                 

molecular structure by energy minimizing them with MMFF force 

field (Halgren, 1996) followed by considering distance-dependent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dielectric constant of 1.0 and convergence criterion of 0.01 

kcal/mol A. 

 

Prediction of ADME descriptors and toxicity 

The major reason for the failure of most of the drug 

candidates during clinical trial are poor ADME and high toxicity 

profile. Thus an important aspect of drug discovery is to evaluate 

critical physio-chemical as well as toxicity profile in initial stages 

of drug discovery (Ray et al., 2010). Hence, to select a potential 

drug candidate, all 13 hypothetical ligands were screened on the 

basis of ADME and toxicity filter using QikProp 4.3 from 

Schrodinger 2013 software. QiKProp used Maestro-formatted 

.mae files (also known as 3D SD files) as input. Output of QikProp 

showed a number of principal descriptors and ADME properties as 

shown in Table S1 (Choudhary et al., 2015). Lipinski rule of 5 

was applied on the ligands and hits which were having more than 1 

violation were rejected. Various other physicochemical properties 

were also calculated, represented by different descriptors such as 

molar weight (MW), number of rotatable bonds (NRB), 

lipophilicity parameter [log P(o/w)], number of hydrogen bond 

acceptors (HBA), number of hydrogen bond donors (HBD), total 

polar sur-face area (TPSA), solubility (log s), solvent-accessible 

surface area (SASA), skin permeability (log Kp), binding to 

human serum albumin (log Khsa), blood-brain partition coefficient 

(logBB), apparent MDCK cell permeability (affyPMDCK), 

apparent Caco-2 cell permeability (affyPCaco), percentage human 

oral absorption (Dash et al., 2015). Ideal ranges of various 

descriptors calculated with the reference to 95% of drugs are 

presented in Table S1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Descriptions and activity of the selected KDR inhibitors including name, structure and predicted activity by using three different models. 

Compound 

Name 
Structure Compound’s Name IC50 

pIC50 

Observed 
Cal 

(D, SLOGP, χ) 

Cal  

(D, SLOGP, 

LUMO) 

Cal  

(D, SLOGP, 

η) 

1 

 

4-(5-((4-

Chlorophenyl)carbamo

yl)naphthalen-2-

yloxy)-N-

methylpicolinamide 

3 8.52288 8.27259 8.26322 8.13549 

2 

 

N-(4-Chlorophenyl)-6-

(pyridin-4-yloxy)-1-

naphthamide 

5 7.74473 7.82488 7.92529 7.83936 

3 

 

N-(4-Chlorophenyl)-6-

(2-

(methylamino)pyridin-

4-yloxy)-1- 

naphthamide 

7 8.1549 7.72738 7.71313 7.89485 

4 

 

N-(4-Chlorophenyl)-6-

(pyrimidin-4-yloxy)-1-

naphthamide 

310 6.50864 6.69023 6.59928 6.8149 

5 

 

N-(4-Chlorophenyl)-6-

(2-

(methylamino)pyrimid

in-4-yloxy)-1- 

naphthamide 

46 7.33724 7.81124 7.80144 7.73016 
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6 

 

N-(4-Chlorophenyl)-6-

(6-

(methylamino)pyrimid

in-4-yloxy)-1- 

naphthamide 

20 7.69897 7.63951 7.66307 7.54596 

7 

 

6-(7H-Pyrrolo[2,3-

d]pyrimidin-4-yloxy)-

N-(4-chlorophenyl)- 

1-naphthamide 

28 7.55284 7.54616 7.54635 7.54794 

8 

 

N-(4-Chlorophenyl)-6-

(quinolin-4-yloxy)-1-

naphthamide 

4 8.39794 8.29596 8.46617 8.44174 

9 

 

N-(4-Chlorophenyl)-6-

(7-methoxyquinolin-4-

yloxy)-1-naphthamide 

1 9 8.9622 8.61254 8.53581 

10 

 

N-(4-Chlorophenyl)-6-

(6,7-

dimethoxyquinolin-4-

yloxy)-1-naphthamide 

0.5 7.38722 7.85128 7.9445 7.94698 

11 

 

N-(4-Chlorophenyl)-6-

(3-fluoro-6,7-

dimethoxyquinolin-4-

yloxy)- 

1-naphthamide 

20 7.69897 7.71085 7.7105 7.70762 

12 

 

4-(5-((4-

Chlorophenyl)carbamo

yl)naphthalen-2-

yloxy)-7-

methoxyquinoline-6-

carboxamide 

0.2 9.69897 9.94529 9.95451 10.0802 

13 

 

N-(4-Chlorophenyl)-6-

(6,7-

dimethoxyquinazolin-

4-yloxy)-1- 

naphthamide 

2 8.69897 8.12471 8.20227 8.18124 

 

 

Table S1: The Descriptors used in ADME-T prediction. 

Predicted physiochemical properties Used Descriptors Ideal Range in 95% of drugs 

Predicted molecular weight MW 311–650 

Predicted dipole moment DM 0.000–1000.0 

Predicted total molecular solvent accessible surface area SASA 300.0–1000.0 

Predicted hydrophobic SASA FOSA 0–750 

Predicted hydrophilic SASA FISA 7–330 

Predicted carbon Pi SASA PISA 0–450 

Predicted weakly polar SASA WPSA 0–175 

Predicted number of hydrogen bond donor HB-donor 0–6 

Predicted number hydrogen bond acceptor HB-accept 2–20 

Predicted octanol/gas partition coefficient QP log P OCT 8.0–35.0 

Predicted water/gas partition coefficient QP log P W 4.0–45.0 

Predicted octanol/water partition coefficient QP log PO/W −2–6.5 

Predicted aqueous solubility QP Log S −6.5–0.5 

Predicted blood–brain partition coefficient QPLogBB (Cbrain/Cblood) −3.0–1.2 

Predicted skin permeability QP Log KP −8.0 to −1.0 

Predicted van der walls surface area of polar nitrogen and oxygen atoms PSA 7–200 

Predicted human oral absorption HOA >80% is high <25% is low 

Predicted number of rotable bond #rotor <10 

Predicted ionization potential IP(ev) 0.000–9.000 

Predicted apparent MDCK cell permeability in nm/sec AffyPMDCK <25 poor, >500 great 

Predicted apparent Caco-2 cell permeability in nm/sec AffyPCaco <25 poor, >500 great 

Prediction of binding to human serum albumin. QPLogKhsa −1.5–1.5 

Predicted IC50 in vitro Log HERG Concern below −5 

Lipinski’s rule of five Rule of 5 Max 4 
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ADME/T prediction in Discovery Studio 

For additional validation purpose, Discovery studio 2.5 

(Accelrys, San Diego, CA, USA) was used to describe absorption, 

distribution, metabolism, elimination, and toxicity (ADME/T) 

properties by using ADME/T descriptors module. Based on the 

existing information of drug, six mathematical models are used in 

the modules to predict quantitatively the properties by a using set 

of rules/keys (Table S2) that specify threshold ADME/T 

characteristics   for   the   chemical   structure   of   the   molecules. 

TOPKAT predictor was also selected, where the models that were 

used to calculate using TOPKAT are Rat Oral LD50 (v3.1), 

Daphnia EC50 (v3.1). 

 

Table S2: ADMET descriptors and their rules/keys. 

ADMET absorption level (human intestinal absorption) 

Level  Description 

0  Good absorption 

1  Moderate absorption 

2  Low absorption 

3  Very low absorption 

 ADMET aqueous solubility level 

Level Value Description 

0 log (molar solubility) Extremely low 

< −8.0 

1 −8.0<log (molar No, very low, but possible 

solubility) < −6.0 

2 −6.0<log (molar Yes, low 

solubility) < −4.0 

3 −4.0<log (molar Yes, good 

solubility) < −2.0 

4 −2.0<log (molar Yes, optimal 

solubility) <0.0 

5 0.0 <log (molar solubility) No, too soluble 

6 −1000 Warning: molecules with 

one or more unknown 

  AlogP98 types 

ADMET (blood brain barrier penetration level) BBB 

Level  Description 

0  Very High 

1  High 

2  Medium 

3  Low 

4  Undefined 

  Warning: molecules with 

5  one or more unknown 

  AlogP calculation 

Predictedclass ADMET CYP2D6 

 Value 

0  Noninhibitor 

1  Inhibitor 

Predictedclass ADMET hepatotoxicity 

 Value 

0  Nontoxic 

1  Toxic 

ADMET (plasma protein binding level) PPB 

Level  Description 

0  Binding is <90% 

1  Binding is ≥90% 

2  Binding is ≥95% 

 

Quantum Descriptors calculation and QSAR Analysis 

All compounds were subjected to geometry optimization 

by using semi-empirical SCF-MO method, implemented in 

MOPAC 7.0. Here, basis set PM3 was used to calculate the 

quantam descriptors. The following quantum chemical descriptors 

were considered: the energy of the highest occupied molecular 

orbital (EHOMO), the lowest unoccupied molecular orbital (ELUMO), 

the band gap energy (∆E), the dipole moment (D), Electrophilicity 

(χ), Global Hardness (η). Using Koopmans’ approximation, and 

ionization energy (I) and electron affinity (A)  can be expressed in 

terms of the energies of the highest occupied (EHOMO) and the 

lowest unoccupied molecular orbital (ELUMO) as: 

 

Ionization potential, I= -EHOMO 

Electron affinity, A= -ELUMO 

 

Electrophilicity index is defined (χ) as a measure of the 

decrease in energy due to the maximal transfer of electrons from a 

donor to an acceptor system and is given as: 

 

χ= µ/2η 

 

Where, µ and η are the chemical potential and hardness, 

respectively. Chemical potential and hardness can be expressed in 

terms of ionization energy (I) and electron affinity (A) as given 

below: 

η= [HOMOε-LUMO ε]/2 

 

 
 

After that, 2D molecular descriptors, SlogPs (according 

to various subdivided accessible van der Waals surface area) were 

calculated by the program MOE (MOE software: Chemical 

computing group’s molecular operating environment (MOE) 

software, version 2014.0901). After that, PLS QSAR (Geladi          

and Kowalski, 1986, Helland, 1988) analysis   was   performed   to 

determine the relationship between these molecular descriptors 

and biological activity of the compounds. The maximum condition 

number of the principal component transform of the correlation 

matrix S, the condition limit, was set at 1.0 × 10
6
 which is a very 

high setting. The leave-one-out cross validation (LOO-CV) 

scheme was used to validate the models and the correlation 

coefficient (Q
2
) and root-mean-square error (RMSE) were 

reported. 

 

RESULTS AND DISCUSSIONS 
 

ADME and toxicity screening  

All 13 hypothetical compounds were screened for “drug-

likeliness and “non-toxic” profile on the basis of various 

parameters of the software QikProp. ADME filter lead to 13 drugs 

like hits. The ADME prediction studies data of 13 hits are shown 

in Table 2. The range of various important parameters were 

predicted, like molecular weight lied in range between 374.826 

and 502.928, the value of total solvent accessible surface area 

(SASA) ranged 645.681–802.389, estimated number of hydrogen 
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bonds donated (Donor HB) by the solute to water molecules in an 

aqueous solutions was found between 1 and 3, estimated number 

of hydrogen bonds accepted (accept HB) by the solute to water 

molecules in an aqueous solutions ranged 4–7.25, predicted 

octanol/gas par-tition coefficient (QPlogPoct) ranged 18.439–

27.16, predicted water/gas partition coefficient (QPlogPw) ranged 

10.268–16.232, predicted octanol/water partition coefficient 

(QPlogPo/w) ranged 3.602–6.513, predicted aqueous solubility, 

log S (QPlogS) ranged -5.684 to -8.177, predicted brain/blood 

partition coefficient (QPlogBB) ranged -0.144  to -1.429, and 

Lipinski violations were ≤2. Results of ADME-T studies reveal 

that compounds from 1 to 13 can be considered best, having 

druglikliness as well as non-toxicity profile. 

 

ADME/T Prediction by TOPAK 

The use of In silico approaches to predict ADME/T 

properties is considered as a first step in the direction to analyze 

the new chemical entities to reduce wasting time on lead 

compounds which would be toxic or metabolized by the  body into  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

an inactive form and unable to pass through membranes, and some  

results for this analysis are herein depicted in Table 3 along with 

ADME/T descriptors and their rules/keys are tabulated in Table 

S2.The ADME/T profile of all the molecules under investigation 

was forecasted by means of six pre calculated ADME/T models 

provided by the Discovery Studio 2.5 program. Lipophilicity could 

be estimated as the log of the partition coefficient between n-

octanol and water (logP). Though logP is generally used to 

determine a compound’s lipophilicity, the fact that logP is a ratio 

creates a concern about the use of logP to score hydrophilicity and 

hydrophobicity (Hughes et al., 2008). Thus the information of H-

bonding prominences as obtained by calculating PSA could be 

taken into consideration along with logP calculation (Egan et al., 

2000). Therefore, a model with descriptors AlogP98 and PSA 2D 

were taken into consideration for the accurate prediction for the 

cell permeability of compounds. According to the model for a 

compound to have an optimum cell permeability should follow the 

evaluation criteria (PSA <140 A˚
2
 and AlogP98 <5) (Egan et al., 

2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: ADME-T descriptors of the compound calculated from QikProp. 
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1 417.851 700.599 3 6.5 3.602 -5.99 -2.617 0.391 246.755 227.703 -1.389 23.459 15.402 90.23 105.509 0 

2 374.826 651.13 1 4.5 4.956 -6.15 -0.588 0.672 2923.974 2242.509 -0.191 18.439 10.268 100 53.16 0 

3 403.867 706.46 2 4.5 5.297 -6.844 -0.772 0.823 2502.012 1941.401 -0.359 21.084 11.383 100 64.318 1 

4 375.813 645.681 1 5.5 4.22 -5.684 -1.219 0.435 1514.856 1220.398 -0.473 18.622 11.202 100 66.347 0 

5 404.855 702.79 2 5.5 4.624 -6.457 -1.313 0.61 1424.41 1152.841 -0.617 21.138 12.327 100 76.818 0 

6 404.855 692.903 2 5.5 4.443 -6.285 -1.702 0.597 940.088 784.881 -0.779 20.866 12.298 100 79.286 0 

7 414.85 676.781 2 5 4.544 -6.327 -1.725 0.684 781.341 661.434 -0.768 20.965 12.461 100 80.817 0 

8 424.885 715.766 1 4 6.121 -7.505 -0.195 1.124 3490.211 2641.573 -0.144 20.166 10.37 100 52.128 1 

9 454.912 752.592 1 4.75 6.212 -7.719 -0.293 1.129 3503.646 2650.982 -0.218 21.12 10.597 100 60.396 1 

10 484.938 797.04 1 5.5 6.396 -8.065 -0.37 1.171 3370.03 2557.287 -0.316 22.375 10.957 100 64.821 1 

11 502.928 794.337 1 5.5 6.513 -8.177 -0.509 1.181 5373.213 2559.34 -0.219 22.273 10.694 100 65.178 2 

12 497.937 802.389 3 7.25 4.694 -7.321 -2.217 0.737 329.67 297.696 -1.429 27.16 16.232 100 110.338 0 

13 485.926 789.7 1 6.5 5.682 -7.535 -0.828 0.908 2117.295 1663.539 -0.535 22.446 11.875 100 78.508 1 

Data indicate the descriptor calculated from QIKProp 4.3. where each descriptor represent one physicochemical properties for “druglikeliness” such as MW- 

molecular weight; SASA- Solvent Assessable Surface Area; HBD- no. of H bond donor; HBA- no. of H bond acceptor; QPlogPo/w- predicted octanol/water 

partition coefficient; QPlogS- predicted aqueous solubility; QPlogKp- predicted skin permeability; QPlogKhsa- predicted human serum albumin binding; Affy 

MDCK- Apparent MDCK cell permeability; AffyCaco- Apparent Caco-2 cell permeability; QPlogBB- predicted brain/blood partition coefficient; QPlogPoct-

predicted octanol/gas partition coefficient; QPlogPw-predicted water/gas partition coefficient.%HOA- Percentage Human Oral Absorption; PSA- Total Polar 

Surface Area; Rule of 5-Lipinski violations. 

 

 

Table 3: Computer aided ADME/T screening Of 13 Compounds. 
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1 0 4.027 0 94.142 4 - -5.842 2 1 0.986 0 0.465 1 

2 0 4.597 0 50.302 4 - -5.966 2 1 0.98 1 0.712 2 

3 0 4.944 0 63.112 1 0.376 -6.28 1 1 0.986 1 0.673 1 

4 0 4.508 0 61.563 1 0.265 -5.967 2 1 0.98 1 0.722 2 

5 0 4.837 0 74.373 1 0.164 -6.349 1 1 0.98 1 0.712 2 

6 0 4.855 0 74.373 1 0.17 -6.365 1 1 0.98 1 0.712 2 

7 0 4.861 0 76.618 1 0.136 -6.834 1 1 0.986 1 0.594 1 

8 1 5.934 0 50.302 0 0.884 -7.494 1 1 0.986 1 0.574 2 

9 1 5.917 0 59.232 0 0.738 -7.375 1 1 0.986 1 0.564 2 

10 1 5.901 0 68.162 4 - -7.268 1 1 0.973 1 0.603 2 

11 1 6.106 0 68.162 4 - -7.444 1 1 0.98 1 0.653 2 

12 1 4.919 0 103.072 4 - -6.915 1 1 0.98 1 0.603 1 

13 1 5.812 0 79.423 4 - -7.247 1 1 0.973 1 0.554 2 
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All the compounds showed polar surface area (PSA) 

<140 A˚
2
. Considering the AlogP98 criteria, all inhibitors had 

AlogP98 value <5. Table 2 shows that among 13 compounds, 6 

compounds have undefined values for BBB penetration levels (4 

as mentioned in Table 2) with the exception of 7 compound 

having very high and high value (level 0 and 1) BBB penetration 

level. The aqueous solubility plays an essential role in the 

bioavailability of the candidate, all of them having low aqueous 

solubility level shown as Table S2.  

All compounds have been predicted to have 

hepatotoxicity level of 1 which is toxic to liver and lower rate of 

first pass metabolism. All compounds exhibit as an inhibitors with 

respect to CYP2D6 liver (with reference to Table S1)                  

except compound 1 shown in Table 3. 

This indicates that they are less metabolized in Phase-I 

metabolism except one. Finally, the ADME/T plasma protein 

binding property prediction denotes that for compounds 1, 2, 3, 7, 

12 binding is ≥90%  and rest of them binding is ≥95% 

respectively, (refer to Table S1), clearly suggesting that all of them 

have good bioavailability and are not likely to be highly bound to 

carrier proteins in the blood. The Rat Oral LD50 values of all the 

compounds are within the Optimum Prediction Space (OPS). And 

the LD50 values are satisfactory. These high LD50 values indicate 

higher safety of these compounds (Table 4). The values obtained 

from daphnia EC50 model show remarkable EC50 values (Table 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QSAR models for inhibitor activity 

The quantum chemical descriptors calculation that 

obtained from geometry optimization like, dipole moment, HOMO 

energy, LUMO energy, ionization energy, electron affinity, 

chemical potential, hardness, and electrophilicity of thirteen 

molecules are represented in Table S3. Parameters like dipole 

moment, LUMO energy, hardness and electrophilicity were 

considered to predict model, since these parameters are widely 

used to describe the stability, toxicity and reactivity of the 

chemical compounds (Kapur et al., 2000). We also considered the 

hydrophobicity, as many authors reported the quantitative 

correlation of toxicity, activity and metabolism of the compounds 

with the octanol-water distribution coefficient descriptor (Bundy et 

al., 2001, Ren and Frymier, 2002, Worgan et al., 2003). In order to 

establish a better predictability, PLS based QSAR study was 

performed by considering experimentally observed values (pIC50), 

along with various descriptors, are presented in Tables 1. 

According to the analysis, the best model included the following 

predictors: SLogP, dipole moment (D), and electrophilicity (χ). 

The model is expressed in the Eq. 1. 

 

pIC50 = -6.21625 + 0.18964(D) + 0.55132(χ) + 

0.05674(SlogP_VSA9) + 0.00000(SlogP_VSA8) + 

0.01887(SlogP_VSA7) + 0.00000(SlogP_VSA6) + 

0.02588(SlogP_VSA5) + 0.20657(SlogP_VSA4) + 

Table 4: Rat oral LD50- Rat oral lethal dose 50 

Compound Name Rat Oral LD50 Heteroaromatic Model 

Computed Rat Oral LD50 95% Confidence Limits 

1 476.9 mg/kg 75.1 mg/kg & 3 g/kg 

2 478.7 mg/kg 79.6 mg/kg & 2.8 g/kg 

3 504.1 mg/kg 85 mg/kg & 3 g/kg 

4 474.5 mg/kg 81.6 mg/kg & 2.8 g/kg 

5 595.2 mg/kg 101.5 mg/kg & 3.5 g/kg 

6 576.9 mg/kg 98 mg/kg & 3.4 g/kg 

7 404 mg/kg 68.9 mg/kg &2.4 g/kg 

8 341.1 mg/kg 57.5 mg/kg & 2 g/kg 

9 297 mg/kg 50 mg/kg & 1.8 g/kg 

10 139 mg/kg 22.8 mg/kg & 848 mg/kg 

11 312.5 mg/kg 51.6 mg/kg & 1.9 g/kg 

12 229.2 mg/kg 35 mg/kg & 1.5 g/kg 

13 161.4 mg/kg 26.6 mg/kg & 980.8 mg/kg 

 

 
Table 5: Daphnia EC50 – Daphnia effective concentration 50 

Compound Name Model: Daphnia EC50 (v3.1) 

Computed EC50 values 95% Confidence Limits 

1 5.4ug/l 731.1ng/l&39.2ug/l 

2 10.6 ug/l 1.8  ug/l&1.9mg/l 

3 347.5ug/l 58.1ug/l&2.1mg/l 

4 13.6ug/l 2.2ug/l&83.2ug/l 

5 299.5ug/l 50ug/l&1.8mg/l 

6 325.7ug/l 54.5ug/l&1.9mg/l 

7 21.9ug/l 3.3ug/l&146.3ug/l 

8 25.4ug/l 3.7ug/l&175.8ug/l 

9 165.1ug/l 24.3ug/l&1.1mg/l 

10 19.6ug/l 2.5ug/l&152.2ug/l 

11 1.8ug/l 204.5ng/l&16.3ug/l 

12 43.3ug/l 5.3ug/l&352.8ug/l 

13 18.8ug/l 2.4ug/l&146.1ug/l 
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0.00000(SlogP_VSA3) + 0.00408(SlogP_VSA2) + 

0.01233(SlogP_VSA1) - 0.12129(SlogP_VSA0) + 0.00522(SlogP) 

n= 

13 

Q2= 

0.86382 

RMSE= 

0.29494 

R2
crossvalidated= 

0.01642 

RMSE cross validated= 

13.70550 

 

The model considers the higher contributions of SLogP, 

dipole moment (D) and electrophilicity (χ) with inhibitory activity. 

A plot of the predicted activity versus experimental activity for 

molecules using training set for model of KDR inhibition is shown 

in Figure 1. 

 

 

 

 
 

Fig. 1: Calculated and observed activity using SLogP, dipole moment (D), and 

electrophilicity (χ) descriptors. 

 

 

Regarding these descriptors, another best model was 

observed in case of LUMO energy, in conjunction with Dipole 

moment (D) and SLogP. The plot of predicted activity values 

(pIC50) versus that predicted on the basis of regression equation for 

a complete set of inhibitors is presented in Figure 2.  

 

pIC50 = - 7.88749 + 0.07002(SlogP_VSA9) + 

0.00000(SlogP_VSA8) + 0.02555(SlogP_VSA7) + 0.00010 

(SlogP_VSA6) + 0.21801(SlogP_VSA4) + 0.03065(SlogP_VSA5) 

+ 0.00000(SlogP_VSA3) - 0.19162(SlogP) - 0.13445(SlogP_VSA) 

+ 0.01493 (SlogP_VSA1) + 0.01656 (SlogP_VSA2) + 0.18532(D) 

- 3.23828(LUMO) 

n= 

13 

Q
2
= 

0.84372 

RMSE= 

0.31595 

R
2

crossvalidated=

0.01635 

RMSE cross validated= 

13.99739 

 

The contribution of global hardness (η) was also found in 

the correlation of biological activity, along with dipole moment 

(D) and SlogP, which is shown in eq. (3).  The correlations that  

found in eq. 3,   is   rendered   in   Figure 3.  

pIC50 = - 4.02472 - 0.00333(η) + 0.18400(D) + 0.00704(SlogP) - 

0.00286(SlogP_VSA1) - 0.11944(SlogP_VSA0) - 

0.00287(SlogP_VSA2) + 0.00000(SlogP_VSA3) + 

0.20603(SlogP_VSA4) + 0.00000(SlogP_VSA6) + 

0.02992(SlogP_VSA5) + 0.01952(SlogP_VSA7) + 

0.00000(SlogP_VSA8) + 0.03195(SlogP_VSA9) 

n= 

13 

Q
2
= 

0.82629 

RMSE= 

0.33310 

R
2

crossvalidated= 

0.02219 

RMSE cross validated= 

10.80850 

 

 

 
Fig. 2: Observed and calculated pIC50 values using SLogP, dipole moment (D), 

and ELUMO energy descriptors. 

 

 
Fig. 3: Observed and calculated pIC50 values using SLogP, dipole moment (D), 

and hardness (η) descriptors. 
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Studies relating the molecular properties of the 

compounds and their KDR inhibitory activity supported this 

hypothesis, as the descriptor dipole moment and SLogP show the 

higher contribution to the activity against KDR in the QSAR 

model, where contribution of electrophilicity is more significant 

than other descriptors. The higher LUMO energy is correlated with 

higher electron affinity. Henceforth, it concludes that increasing of 

electron affinity can increase the KDR inhibition activity. It is 

remarkable to note that increase in global hardness of the molecule 

leads to increase in stability and decrease in reactivity of the 

species (Ayers and Parr, 2000). From eq. (3), it also confirms that 

hardness of these molecules influence their inhibitory activity. 

However as a whole, this result is anticipated as the 

hydrophobicity and lipophilicity of the chemical compounds 

mainly govern their biological actions at cellular and molecular 

levels.  

 

CONCLUSION 
 

The current study is designed to reveal the therapeutic 

potentiality of some selected N-4-chlorophenylnaphthamide 

derivatives regarding the perspectives in tyrosine kinase inhibitor. 

In collateral, our findings agree with the existing evidence with 

concluding a better pharmacokinetics profile. The results of QSAR 

and ADME/T studies are validated each other and the developed 

mathematical models could provide insight into the structural 

requirements for the synthesis of new potential chemical structure 

having a better KDR inhibition activity.  
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