
© 2015 Consolacion Y. Ragasa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-
ShareAlikeUnported License (http://creativecommons.org/licenses/by-nc-sa/3.0/). 

 
 

 
 
Journal of Applied Pharmaceutical Science Vol. 5 (04), pp. 094-100, April, 2015 
Available online at http://www.japsonline.com 
DOI: 10.7324/JAPS.2015.50416 
ISSN 2231-3354   

 

Triterpenes and Acylglycerols from Canarium ovatum 
 
Consolacion Y. Ragasa1,2*, Oscar B. Torres2, Jessa Mae P. Gutierrez2, Hannah Patricia Beatriz C. Kristiansen2, and 
Chien-Chang Shen3 
 
1Chemistry Department, De La Salle University Science & Technology Complex Leandro V. Locsin Campus, Biñan City, Laguna 4024, Philippines 
2Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 1004, Philippines. 3National Research Institute of Chinese Medicine, 155-1, Li-
Nong St., Sec. 2, Taipei 112, Taiwan. 
 
  
 
 
 

 

ARTICLE INFO 
 
 

 

ABSTRACT 

 

Article history: 
Received on: 19/01/2015 
Revised on: 09/02/2015 
Accepted on: 27/02/2015 
Available online: 27/04/2015 
 

 
 
 
 
 
 
 
 
 
 

 

Chemical investigations of the dichloromethane extracts of the leaves of Canarium ovatum Engl. afforded β-
amyrin (1a), α-amyrin (1b), epi-β-amyrin (2a), epi-α-amyrin (2b), epi-lupeol (2c), β-carotene (3) and lutein (4); 
while the twigs yielded 1a-1b. The dichloromethane extracts of the fruits of C. ovatum yielded triacylglycerols 
(5); the mesocarp also afforded 1a, 1b, 1,2-dioleylglycerol (6), and monounsaturated and saturated fatty acids; 
the nutshell also provided 6; and the kernel also yielded monounsaturated and saturated fatty acids. The structures 
of 1-6 and the fatty acids were identified by comparison of their 1H and/or 13C NMR data with those reported in 
the literature. 
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INTRODUCTION 
 

Canarium ovatum Engl. of the family Burseraceae and 
locally known as pili is indigenous to the Philippines (Brown, 
1954). It is the most important nut producing tree in the 
Philippines (Coronel, 1996) where the roasted or candied nuts are 
sold commercially (Pili, 2014). The young shoots are edible, 
while the green pulp can be pickled (Pili, 2014). The oil from the 
pulp is used for cooking and lighting (Brown, 1954). The tree is 
also used as lumber and fuel (Coronel, 1996). The C. ovatum 
resin is employed as an ointment for healing wounds and as a 
plaster, while raw nuts are used as purgative (Canarium ovatum, 
2014). The roasted and unroasted pili nut oil scavenged DPPH 
radicals by 24.66% and 9.52%, respectively at a concentration of 
140μg/mL (Zarinah et al., 2014). A recent study reported that the 
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methanol extract of Canarium ovatum resin afforded eighteen 
known terpenoids consisting of four sesquiterpenes, cryptomeridiol, 
4-epicryptomeridiol, eudesm-4(15)-ene-1β,11-diol, cadin-1(14)- 
ene-7β,11-diol and fourteen tritepenes, α-amyrin, 3-epi-α-amyrin, 
brein, 3-epibrein, uvaol, β-amyrin, 3-epi-β-amyrin, maniladiol, 3-
epimaniladiol, lupeol, 3-oxotirucallic acid, 3α-hydroxytirucallic 
acid, 3β-hydroxytirucallic acid, and 3α-hydroxytirucalla-7,24-dien-
21-oic acid. Three of the sesquiterpenes exhibited inhibitory effects 
on melanin production with 27.4 –34.1 and 39.0–56.9% reduction 
of melanin content at 50 and 100 μM, respectively (Kikuchiet al., 
2012). An earlier study reported that gas chromatography (GC) and 
reversed phase-high pressure liquid chromatography (RP-HPLC) of 
C. ovatum oil yielded polyunsaturated fatty acids (18∶2 and 18∶3) 
which were less than 11%, whereas palmitic acid (16∶0) and stearic 
acid (18∶0) were 33.3 and 10.9%, respectively. Triacylglycerol 
analysis showed that the high-melting fraction from pili nut oil 
consisted of POP, POS and SOS+SSO (P = palmitic acid, O = oleic 
acid, and S = stearic acid) in the proportion of 48.6, 38.8, and 8.7%, 
respectively (Kakuda et al., 2000).       
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This study is part of our research on the chemical 
constituents of Canarium species found in the hilippines. We 
earlier reported the isolation of a mixture of new triterpene 
diastereomers, asperol a and asperol b, and the major triterpene 
constituents, β-amyrin and α-amyrin from Canarium asperum 
resin (Ragasa et al., 2014a). We report herein the isolation from 
the dichloromethane extracts of the leaves of C. ovatum of a 
mixture of β-amyrin (1a) and α-amyrin (1b) in a 1:3 ratio, another. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

mixture of epi-β-amyrin (2a), epi-α-amyrin (2b) and epi-lupeol 
(2c) in a 2:1:0.5 ratio, β-carotene (3) and lutein (4), while the twigs 
yielded a mixture of 1a and 1b in a 1:2 ratio. The dichloromethane 
extracts of the nuts and pulp of C. ovatum yielded triacylglycerols 
(5); the mesocarp also afforded 1a, 1b, 1,2-dioleylglycerol (6) 
(Fig. 1) and a  mixture  of monounsaturated and saturated fatty 
acids in a 3:2 ratio; the nutshell also provided 6; and the kernel 
also yielded a mixture of monounsaturated and saturated fatty acid 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MATERIALS AND METHODS 

 
 

Fig. 1: Chemical consitituents of Canarium ovatum β-amyrin (1a), α-amyrin (1b), epi-β-amyrin (2a), epi-α-amyrin (2b) and epi-lupeol (2c), β-carotene (3), lutein 
(4), triacylglycerols (5), 1,2-diacylglycerol (6). 
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in a 2:1 ratio. To the best of our knowledge this is the first report 
on the chemical constituents of the leaves, twigs and fruits of C. 
ovatum. Previous studies were conducted on the chemical 
constituents of the oil (Kakuda et al., 2000) and methanol extract 
of the resin (Kikuchi et al., 2012) of C. ovatum. 
 
General Experimental Procedure 

NMR spectra were recorded on a Varian VNMRS 
spectrometer in CDCl3 at 500 MHz for 1H NMR; and 125 MHz for 
13C NMR spectra. Column chromatography was performed with 
silica gel 60 (70-230 mesh). Thin layer chromatography was 
performed with plastic backed plates coated with silica gel F254 and 
the plates were visualized by spraying with vanillin/H2SO4 
solution followed by warming.  
 
General Isolation Procedure 

A glass column 20 inches in height and 2.0 inches 
internal diameter was packed with silica gel. The crude extracts 
were fractionated by silica gel chromatography using increasing 
proportions of acetone in dichloromethane (10% increment) as 
eluents.  

One hundred milliliter fractions were collected. All 
fractions were monitored by thin layer chromatography. Fractions 
with spots of the same Rf values were combined and 
rechromatographed in appropriate solvent systems until TLC pure 
isolates were obtained. A glass column 12 inches in height and 0.5 
inch internal diameter was used for the rechromatography. Five 
milliliter fractions were collected. Final purifications were 
conducted using Pasteur pipettes as columns. One milliliter 
fractions were collected. 
 
Sample collection and preparation 

The leaves and stems of Canarium ovatum were 
collected from the De La Salle University-Manila campus in July 
2012. The fruit sample was collected from the province of 
Camarines Norte, Philippines in September 2012. It was identified 
as Canarium ovatum Engl. at the Bureau of Plant Industry in San 
Andres, Malate, Manila, Philippines.  

The leaves and stems of C. ovatum were air-dried for 
about two weeks. The whole fruit of C. ovatum was separated into 
mesocarp (thick flesh), nutshell and kernel. The mesocarp and 
kernel were separately ground in a blender and freeze- dried. The 
nutshell was ground in a mortar and pestle and air-dried. 
 
Isolation of the chemical constituents of the leaves 

The air-dried leaves (250 g) was soaked in CH2Cl2 for 
three days and then filtered. The filtrate was concentrated under 
vacuum to afford a crude extract (16 g) which was 
chromatographed using increasing proportions of acetone in 
CH2Cl2 at 10% increment. The CH2Cl2 fraction was 
rechromatographed (3×) using petroleum ether to afford 3 (3 mg). 
The 20% and 30% acetone in CH2Cl2 fractions were combined and 
rechromatographed (4 ×) in 15% EtOAc in petroleum ether to 

afford a mixture of 1a-1b (7 mg) and another mixture of 2a-2c (5 
mg) after washing with petroleum ether. The 60% acetone in 
CH2Cl2 fraction was rechromatographed (5×) in 
Et2O:CH3CN:CH2Cl2 (0.5:0.5:9, v/v)  to yield 4 (7 mg). 

 
Isolation of the chemical constituents of the twigs 

The air-dried twigs (105 g) was soaked in CH2Cl2 for 
three days and then filtered. The filtrate was concentrated under 
vacuum to afford a crude extract (1.0 g) which was chromato-
graphed using increasing proportions of acetone in CH2Cl2 at 10% 
increment. The 20% CH2Cl2 fraction was rechromatographed (4×) 
using 5% EtOAc in petroleum ether to afford a mixture of 1a and 
1b (4 mg) after washing with petroleum ether.  
 
Isolation of the chemical constituents of the kernel 
 The freeze-dried kernel (190 g) was soaked in CH2Cl2 for 
three days and then filtered. The filtrate was concentrated under 
vacuum to afford a crude extract (48 g) which was 
chromatographed using increasing proportions of acetone in 
CH2Cl2 at 10% increment. The 10% and 20% acetone in CH2Cl2 
fractions were combined and rechromatographed (3×) using 5% 
EtOAc in petroleum ether to afford 5 (25 mg). The 30% acetone in 
CH2Cl2 fraction was rechromatographed (2×) using 10% EtOAc in 
petroleum ether to afford a mixture of monounsaturated and 
saturated fatty acids (10 mg).  
 
Isolation of the chemical constituents of the nutshell 

The air-dried nutshell (953 g) was soaked in CH2Cl2 for 
three days and then filtered. The filtrate was concentrated under 
vacuum to afford a crude extract (9 g) which was 
chromatographed using increasing proportions of acetone in 
CH2Cl2 at 10% increment.  

The 10% acetone in CH2Cl2 fraction was 
rechromatographed (4×) using 5% EtOAc in petroleum ether to 
afford 5 (95 mg). The 30% acetone in CH2Cl2 fraction was 
rechromatographed (3×) using Et2O:CH3CN:CH2Cl2 
(0.25:0.25:9.5, v/v) to yield 6 (3 mg). 
 
Isolation of the chemical constituents of the mesocarp 

The freeze-dried mesocarp (707 g) was soaked in      
CH2Cl2 for three days and then filtered. The filtrate was 
concentrated under vacuum to afford a crude extract (27.3 g) 
which was chromatographed using increasing proportions of 
acetone in CH2Cl2 at 10% increment.  

The 10% and 20% acetone in CH2Cl2 fractions were 
combined and rechromatographed (2×) using 5% EtOAc in 
petroleum ether to afford 5 (75 mg). The 20% acetone in CH2Cl2 
fraction was rechromatographed (3×) using 10% EtOAc in 
petroleum ether to afford a mixture of monounsaturated and 
saturated fatty acids (8 mg).   

The 30% acetone in CH2Cl2 fraction was 
rechromatographed (3×) using 10% EtOAc in petroleum ether to 
afford a mixture of monounsaturated and saturated fatty acids (18 
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mg). The 40% acetone in CH2Cl2 fraction was rechromatographed 
(4×) using 15% EtOAc in petroleum ether to yield 6 (9 mg). 
 
β-Amyrin (1a) 

Colorless solid. 1H NMR (500 MHz, CDCl3) δ 3.15 (dd, 
J = 5.0, 11.0 Hz, H-3), 5.16 (t, J = 3.5 Hz, H-12), 0.77 (s, CH3-
23), 0.90 (s, CH3-24), 0.73 (s, CH3-25), 0.94 (s, CH3-26),       1.16 
(s, CH3-27), 1.05 (s, CH3-28), 0.86 (s, CH3-29), 0.78 (s, CH3-30). 
 
α-Amyrin (1b) 

Colorless solid. 1H NMR (500 MHz, CDCl3): δ 3.15 (dd, 
J = 5.0, 11.0 Hz, H-3), 5.10 (t, J = 3.5 Hz, H-12), 0.93 (s, CH3-
23), 0.74 (s, CH3-24), 0.73 (s, CH3-25), 0.89 (s, CH3-26), 1.01 (s, 
CH3-27), 0.94 (s, CH3-28), 0.85 (d, J = 6.0 Hz, CH3-29), 0.74 (d, J 
= 7.0 Hz, CH3-30). 
 
epi-β-Amyrin (2a) 

Colorless solid. 1H NMR (500 MHz, CDCl3):          δ 
5.16 (1H, t, J = 4.2Hz, H-12), 3.39 (1H, br s, H-3),         0.78-0.99 
(18H, m, 6 x CH3), 1.07 (3H, s, CH3) and 1.20 (3H, s, CH3). 
 
epi-α-Amyrin (2b) 

Colorless solid. 1H NMR (500 MHz, CDCl3): δ 5.10 (1H, 
t, J = 4.2, H-12), 3.39 (1H, br s, H-3), 0.78-0.99 (21H, m, 7 x CH3) 
and 1.07 (3H, s, CH3). 
 
epi-Lupeol (2c) 

Colorless solid. 1H NMR (500 MHz, CDCl3): δ 4.67, 
4.55 (each 1H, br s, H2-29), 3.37 (1H, t, J = 3.0 Hz, H-3β), 2.28 
(1H, m, H-19), 1.66 (3H, s, Me-30), 1.01 (3H, s, Me-26), 0.95 
(3H, s, Me-23), 0.93 (3H, s, Me-27), 0.84 (3H, s, Me-25), 0.82 
(3H, s, Me-28), 0.78 (3H, s, Me-24). 
 
-Carotene (3) 

Red orange crystals. 1H NMR (500 MHz, CDCl3): δ 
6.09-6.62 (CH=), 1.03 (12H, s, CH3), 1.95 (12H, s, allylic CH3), 
1.70 (6H, s, allylic CH3). 
 
Lutein (4) 

Orange crystals. 1H NMR (500 MHz, CDCl3): δ 1.05 (s, 
2 ring A CH3), 0.83 (s, ring B CH3), 0.98 (s, ring B CH3), 1.60 
(allylic CH3), 1.71 (allylic CH3), 1.89 (allylic CH3), 1.951 (allylic 
CH3), 1.944 (2 allylic CH3), 1.45, 1.75 (CH2), 1.35, 1.85 (CH2), 
2.35, 2.00 (allylic CH2), 2.38 (allylic CH), 4.23 (br s, CHOH), 3.98 
(m, CHOH), 5.52 (br s, =CH), 5.41 (dd, J = 9.5, 15.5 Hz, =CH), 
6.56-6.65, 6.33 (dd, J = 18, 3.6 Hz), 6.23 (br d, J = 12 Hz), 6.09-
6.14 (=CH).  
 
Triacylglycerols (5) 

Colorless oil. 1H NMR (500 MHz, CDCl3): δ 4.27 (2H, 
dd, J = 4.5, 12.0 Hz, glyceryl CH2O), 4.12 (2H, dd, J = 6.0, 11.5 
Hz, glyceryl CH2O), 5.24 (1H, m, glyceryl CHO), 2.31 (6H, t, J = 

3.5 Hz, α-CH2), 5.32 (m, olefinic H), 2.74 (double allylic CH2), 
1.97-2.03 (allylic, CH2), 1.23-1.33 (CH2), 0.86 (t,J = 6.5 Hz, CH3). 
 
1,2-Dioleylglycerol (6) 

Colorless oil. 1H NMR (500 MHz, CDCl3): δ 5.33 (4H, 
m), 5.06 (1H, m, glyceryl CHO), 4.28 (1H, dd, J = 4.5, 11.5 Hz, 
glyceryl CH2O), 4.12 (1H, dd, J = 5.5, 12.0 Hz, glyceryl CH2O), 
3.71 (2H, brs, glyceryl CH2OH), 2.32 (t, J = 6.0 Hz, α-CH2), 1.97-
2.04 (allylic CH2), 1.60 (m, β-CH2), 1.22-1.28 (CH2), 0.86 (t, J = 
6.0 Hz, CH3); 13C NMR (125 MHz, CDCl3): δ 173.1, 172.8, 
130.03 (C-9), 129.69 (C-10), 72.10 (glyceryl CHO), 61.96 
(glyceryl CH2OH), 61.55 (glyceryl CH2O), 34.26, 34.10, 34.08, 
31.91, 31.90, 29.78, 29.69, 29.65, 29.61, 29.52, 29.46, 29.35, 
29.31, 29.26, 29.22, 29.17, 29.10, 29.08, 29.05, 27.21, 27.16, 
24.91, 24.88, 24.86, 22.67, 22.65 (CH2), 14.11 (terminal CH3). 
 
Monounsaturated fatty acid 

Colorless oil. 1H NMR (500 MHz, CDCl3): δ 5.33 (m, 
=CH), 2.33 (t, J = 7.5 Hz, α-CH2), 1.97-2.01 (m, allylic CH2), 1.60 
(m, β-CH2), 1.24-1.32 (CH2), 0.86 (t, J = 6.0 Hz). 
 
Saturated fatty acid 

Colorless oil. 1H NMR (500 MHz, CDCl3): δ 2.33 (t, J = 
7.5 Hz, α-CH2), 1.60 (m, β-CH2), 1.24-1.32 (CH2), 0.86 (t, J = 6.0 
Hz). 
 
RESULTS AND DISCUSSION 
 

Silica gel chromatography of the dichloromethane 
extracts of the leaves of Canarium ovatum Engl. afforded a 
mixture of β-amyrin (1a) (Ragasa et al., 2014c) and α-amyrin (1b) 
(Ragasa et al., 2014c) in a 1:3 ratio, and another mixture of epi-β-
amyrin (2a), epi-α-amyrin (2b) (Dekebo et al., 2002) and epi-
lupeol (2c) (Rahman et al., 2007) in a 2:1:0.5 ratio, β-carotene 
(Cayme and Ragasa, 2004) (3), and lutein (4) (Ragasa et al., 
2014d). The twigs yielded a mixture of 1a and 1b in a 1:2 ratio. 
The 1:3 and 1:2 ratios of 1a and 1b from the leaves and twigs, 
respectively were deduced from the integrations of the 1H NMR 
resonances for the olefinic protons of 1a at δ 5.22 (t, J = 3.6 Hz) 
and 1b at δ 5.15 (t, J = 3.6 Hz). The 2:1:0.5 ratio of 2a, 2b and 2c 
was deduced from the integrations of the 1H NMR resonances for 
the olefinic protons of 2a at δ 5.28 (t, J = 3.6 Hz), 2b at δ 5.24 (t, J 
= 3.6 Hz) and 2c at δ 4.67 (br s) and 4.55 (br s). 
 Silica gel chromatography of the dichloromethane 
extracts of the kernel, nutshell, mesocarp and endocarp of 
Canarium ovatum Engl. yielded triacylglycerols (5) (Ragasa et al., 
2013). Based on the integrations of the triacylglycerol (5) protons 
in the nutshell, the fatty acids attached to the glycerol are oleic 
acid (Human Metabolome, 2014b), linoleic acid (Human 
Metabolome, 2014a) and saturated fatty acid, possibly palmitic 
acid (Human Metabolome, 2014c). Oleic acid, linoleic acid and 
palmitic acid were reported as major constituents of C. ovatum oil 
(Kakuda et al., 2000). Based on the integrations of the 
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triacylglycerol (5) protons in the mesocarp and kernel, the fatty 
acids attached to the glycerol are oleic acid (2 ×) and palmitic acid. 
The mesocarp also yielded 1,2-diacylglycerol (6) (Vlahov,      
1999; Ragasa et al., 2005) and a mixture of monounsaturated  and  
saturated fatty acid. The fatty acid esterified to the 1,2-
diacylglycerol (5) is oleic acid (Human Metabolome, 2014b) as 
deduced from the integrations of the 1H NMR resonances of the 
olefinic protons at δ 5.33, the allylic protons at δ 1.97-2.04, the α-
methylene protons at δ 2.32 and the terminal methyl protons at δ 
0.86. Thus, 6 is 1,2-dioleylglycerol which was confirmed by 
comparison of its 13C NMR data with literature data (Vlahov, 
1999). Compound 6 was also obtained from the nutshell. The 3:2 
ratio of the monounsaturated and saturated fatty acids obtained 
from the mesocarp was deduced from the integrations of the 
olefinic acid proton resonances at δ 5.33, the allylic protons at δ 
2.0, the α-methylene protons at δ 2.30 and the terminal methyl 
protons at δ 0.87 for the monounsaturated fatty acid and the α-
methylene protons at δ 2.30 and the terminal methyl protons at δ 
0.87 for the saturated fatty acid. The monounsaturated fatty acid is 
possibly oleic acid, while the saturated fatty acid is possibly 
palmitic acid. Both fatty acids were reported as major constituents 
of C. ovatum oil (Kakuda et al., 2000).  The kernel also afforded 
oleic acid and palmitic acid in a 2:1 ratio.  

Although no biological activity tests were conducted on 
the isolated compounds (1-6 and fatty acids), literature search 
revealed that these have diverse biological activities as follows.  

β-Amyrin (1a) and α-amyrin (1b) were reported to 
possess anti-inflammatory (Recio et al., 1995; Madeiros et al., 
2007; Okoye et al., 2014) and analgesic (Otuki et al., 2005; Soldi 
et al., 2008) properties. β-Amyrin showed antifungal activity 
against A. rabiei with an MIC value of 0.0156 mg/mL (Jabeen et 
al., 2011).  α-Amyrin was proposed as a possible biomarker for the 
fungal resistance of grape-vine leaves (Vitis vinifera) (Batovska et 
al., 2008). The mixture of 1a and 1b effectively reduced the 
elevated plasma glucose levels during the oral glucose tolerance 
test (OGTT). Furthermore, the mixture of 1a and 1b at 100 mg/kg 
significantly decreased the VLDL and LDL cholesterol and 
increased the HDL cholesterol (Santos et al., 2012). A review on 
the sources and biological activities of 1a and 1b has been 
provided (Vasquez et al., 2012). 

Epi-β-amyrin (2a) was reported to inhibit Mycobacterium 
tuberculosis growth (MIC = 12.2 µg/mL) and showed cytotoxicity 
against Vero cells (IC50 = 127.2 µg/mL) (Woldemichael et al., 
2004). Triterpene 2a inhibited the cell growth of UACC-62 
(human melanoma cancer), MCF-7 (human breast cancer) and TK-
10 (human renal cancer) by 50% with GI50 = >200, 128±29, >200, 
respectively (Cota et al., 2007). Triterpene 2a was reported to 
exhibit stimulatory effect on the root growth of amaranth at 50% 
stimulatory concentration (SC50) of 5.1×10−4 M, while it showed 
root growth inhibitory effect at 50% inhibitory concentration (IC50) 
of 7.30×10−4 M for barnyard grass and 8.72×10−4 M for tomato 
(Macías-Rubalcava et al., 2007). 

Lupeol and epilupeol (2c) showed antifungal activity 
against Fusarium oxysporum and Penicillium notatum (Manzano 

et al., 2013). Another study reported that 2c and epilupeol acetate 
showed pronounced antiviral activity against Ranikhet disease 
virus (RDV) in chick embryo (Chowdhury et al., 1990). Triterpene 
2c showed significant activity against CEM-SS Qmman T-
lymphoblastic leukemia cancer cells using MTT assay with an IC50 
value of 6.1 ± 0.20 μg/mL (Mustahil et al., 2013). Another study 
reported that 2c exhibited antitubercular activity against 
Mycobacterium tuberculosis strain H37Rv using the Microplate 
Alamar Blue Assay with a minimum inhibitory concentration 
(MIC) of 4 μg/mL (Akihisa et al., 2005).   

β-Carotene (3) dose-dependently induced apoptosis and 
cell differentiation in cultured leukemia cells, but not in normal 
cells (Upadhyaya et al., 2007). Another study reported that β-
carotene could reduce damage caused by radiation therapy and 
decrease local cancer recurrence (Meyer et al., 2007). It also 
inhibited angiogenesis by altering the cytokine profile and the 
activation and nuclear translocation of transcription factors 
(Guruvayoorappan and Kuttan, 2007). 

Dietary lutein (4), especially at 0.002%, inhibited tumor 
growth by selectively modulating apoptosis, and by inhibiting 
angiogenesis (Chew et al., 2003). Another study reported that the 
chemopreventive properties of all-trans retinoic acid and lutein 
may be attributed to their differential effects on apoptosis 
pathways in normal versus transformed mammary cells (Sumatran 
et al., 2000). Moreover, very low amounts of dietary lutein 
(0.002%) can efficiently decrease mammary tumor development 
and growth in mice (Park et al., 1998). Another study reported that 
lutein and zeaxanthine reduces the risk of age related macular 
degeneration (SanGiovanni, 2007). Triacylglycerols (5) exhibited 
antimicrobial activity against S. aureus, P. aeruginosa, B. subtilis, 
C. albicans, and T. mentagrophytes (Ragasa et al., 2013). Another 
study reported that triglycerides showed a direct relationship 
between toxicity and increasing unsaturation, which in turn 
correlated with increasing susceptibility to oxidation (Ferruzzi and 
Blakeslee, 2007). sn-1,2-Diacylglycerols (6) modulate vital 
biochemical mechanisms since they function as second 
messengers in many cellular processes (Christie, 2013). Another 
study reported that the directed migration of leukocytes can be 
stimulated by 1,2-diacylglycerol (Wright et al., 1988).  

Linoleic acid belongs to the omega-6 fatty acids. It was 
reported to be a strong anticarcinogen in a number of animal 
models. It reduces risk of colon and breast cancer (Chan et al., 
2002) and lowers cardiovascular disease risk and inflammations 
(Whelan, 2008). A recent study reported that oleic acid, a 
monounsaturated fatty acid inhibited cancer cell growth and 
survival in gastric carcinoma SGC7901 and breast carcinoma 
MCF-7 cell lines (Li et al., 2014). Another study demonstrated 
that oleic acid promotes apoptotic cell death of breast cancer cells 
(Menendez et al., 2005). It was also shown to be effective at 
depressing lipogenesis and cholesterologenesis (Natali et al., 
2007). Furthermore, it may contribute to the prevention of 
atherogenesis (Carluccio et al., 1999). Monounsaturated fatty acids 
were reported to lower total and LDL cholesterol levels, increase 
HDL cholesterol levels and decrease plasma triglyceride levels 
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(Kris-Etherton, 1999). Palmitic acid, a saturated fatty acid showed 
selective cytotoxicity to human leukemic cells, induced apoptosis 
in the human leukemic cell line MOLT-4 and exhibited in vivo 
antitumor activity in mice (Harada et al., 2002).  
 
CONCLUSION 
 

 The leaves of C. ovatum afforded triterpenes and 
carotenoids; the twigs yielded triterpenes; and the fruits gave 
diacylglycerol, fatty acids and triacylglycerols with varying fatty 
acid compositions. The compounds obtained from the leaves, 
twigs and fruits of C. ovatum were reported to exhibit diverse 
biological activities.  
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