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Nitric oxide (NO) and prostaglandin (PG)E2, known inflammatory mediators, are critically involved in the 
pathogenesis of a large number of human inflammatory diseases.  Therefore, a search of inducible nitric oxide 
synthases (iNOS) and cyclooxygenase 2 (COX-2) selective inhibitors is a useful strategy to find functional 
substances to alleviate inflammatory disease.  In our search for anti-inflammatory ingredients, we found that 
extracts of Ulva fasciata (UFE) and Desmarestia viridis (DVE) inhibit the generation of NO and PGE2 in 
lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells.  U. fasciata and D. viridis were extracted 
with 80% ethanol and then partitioned successively with ethyl acetate.  The ethyl acetate fractions are effective 
dose-dependent inhibitors of LPS-induced NO and PGE2 synthesis in RAW 264.7 cells.  To test the inhibitory 
effects of UFE and DVE on pro-inflammatory cytokines, we performed ELISA assays for tumor necrosis factor 
(TNF)-α, IL (interleukin)-1β, and IL(interleukin)-6 in LPS-stimulated RAW 264.7 macrophage cells.  In these 
assays, the UFE and DVE showed a dose-dependent decrease in the production of TNF-α, IL-1β, and IL-6.  As a 
preliminary study of the anti-inflammatory mechanism, we determined, using the Western blot analysis, whether 
or not UFE and DVE inhibit the degradation of I-kappa-B-alpha (IκB-α).  Our results indicate that UFE and DVE 
indeed prevent the degradation of IκB-α, in a dose-dependent manner.  Based on these results, we suggest that 
extracts of U. fasciata and D. viridis be considered candidates for anti-inflammatory agents for human use.  
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INTRODUCTION 
 

Due to their enormous biodiversity and safety—as they 
have long been used in traditional foods and folk medicine—
marine algae are considered very attractive materials to screen for 
medicinal natural products,  Indeed, they have been consumed 
widely in diets and skin cures in such Far East Asia countries as 
Korea, China, and Japan.  For this reason, seaweeds have been an 
extensive focus in alternative medicines, cosmetic materials, food 
additives, and pharmaceuticals, as well as in various industrial 
fields (Guinea et al., 2012; Ferreres et al., 2012).  Indeed, many 
recent investigations have proven the anti-inflammatory effect of 
seaweeds.  Yang et al., (2010) reported that the anti-inflammatory  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

effect of Petalonia binghamiae in LPS-induced macrophages is 
mediated by suppressing iNOS and COX-2; Yoon et al., (2010) 
reported that the brown alga Sargassum muticum inhibits  
proinflammatory cytokines, iNOS, and COX-2 expression; and 
Yoon et al., (2009) reported the inhibitory effect of the brown alga 
Sargassum micracanthum on the production of pro-inflammatory 
mediators and cytokines in the mouse macrophage cell line RAW 
264.7. Marine algae and their organic extracts are known to contain 
a great number of biologically active natural products with diverse 
health benefits.  Moreover, they are considered to be good sources 
of phlorotannins and have been shown to exhibit anti-inflammatory 
properties that act by inhibiting pro-inflammatory mediators and 
cytokines (Dutot et al., 2012; Yang et al., 2012).  Kim et al., (2013) 
recently found that an algal phlorofucofuroeckol A, isolated from 
Ecklonia cava, suppressed the expression of iNOS, COX-2, and 
pro-inflammatory cytokines via the inhibition of nuclear factor-κB,  
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c-Jun NH2-terminal kinases, and Akt in microglial cells.  Jung et 
al., (2013) reported the anti-inflammatory activity of the edible 
brown alga Eisenia bicyclis and its constituent phlorotannins.  
Also, several anti-inflammatory compounds such as apo-9’-
fucoxanthinone, sargaquinoic acid, and sargachromenol have been 
discovered (Ham et al., 2010; Yang et al., 2013).  These 
compounds, abundant in Sargassum sp., display anti-
inflammatory, as well as various other activities.  Thus, the fact 
that alga fractions and bioactive substances could be added to 
foods and cosmetics to control chronic and/or skin inflammation 
has already been acknowledged (Kwon et al., 2013; Sarithakumari 
et al., 2013; Yoon et al., 2012).  

A green alga, Ulva fasciata Delile, commonly known as 
‘sea lettuce’ and called “Ttigalparae” in Korea, is widely 
distributed on intertidal rocks, in tide pools, and on reef flats in the 
Caribbean, Indian, Pacific, and eastern Atlantic Oceans.  It is an 
important foodstuff and has been used in soups and salads (Ryu et 
al., 2013; Chakraborty and Paulraj 2010).  U. fasciata extracts 
with antimicrobial (Chakraborty et al., 2010 and anti-cancer 
activities (Ryu et al., 2013) have been reported.  Furthermore, its 
antioxidant properties due to its sesquiterpenoids have been 
demonstrated with free radical-scavenging assays (Chakraborty 
and Paulraj 2010).  However, no report of anti-inflammatory 
activity in dried products of U. fasciata has yet appeared.  
Desmarestia viridis, a species of brown alga, commonly known as 
stringy acid kelp, green acid kelp, sea sorrel, or Desmarest's green 
weed, and in Korea as Soekkorisanmal, is found in shallow 
intertidal areas worldwide.  Neither has any report of a biological 
activity of D. viridis appeared until now. 

In our search for natural anti-inflammatory agents from 
marine organisms, we observed that extracts of U. fasciata and D. 
viridis strongly inhibit NO production.  The aim of the present 
work was to evaluate the properties of U. fasciata and D. viridis 
that could be harnessed for human benefit.  
 
MATERIALS AND METHODS 
 

Preparation of seaweed extracts 
U. fasciata and D. viridis, collected on Jeju Island in 

June 2011, were identified by Dr. Wook Jae Lee at Jeju 
Technopark (JTP).  Voucher specimens (CSC-005 and CSC-006, 
respectively) were deposited at the Department of Chemistry, Jeju 
National University, Jeju, Korea.  The U. fasciata and D. viridis, 
washed and then dried for 2 weeks at room temperature, were 
ground to a fine powder.  Five-gram samples of the each were 
extracted for 24 h at room temperature with 2 L of 80% ethanol 
and then evaporated under vacuum.  The dried U. fasciata and D. 
viridis extracts were suspended in 1 L of water and partitioned 
successively four times with 1 L of EtOAc. 
 
RAW 264.7 cell culture 

RAW 264.7 cells, purchased from the Korean Cell Line 
Bank (Seoul, Korea), were maintained in an incubator at 37 °C, 
under 5 % CO2, in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10 % heat inactivated fetal bovine serum 
(FBS), penicillin (100 units/mL), and streptomycin (100 μg/mL).  
For this study the cells were mechanically passaged by 
dissociation every other day; they underwent fewer than 25 
passages. 
 
Lactate dehydrogenase (LDH) assay 

LDH activity was determined from the nicotinamide 
adenine dinucleotide hydrogen (NADH) produced during the 
conversion of lactate to pyruvate in the RAW 264.7 cells.  The 
release of LDH, used to detect cytotoxicity, was measured at the 
end of each proliferation experiment with an LDH cytotoxicity 
detection kit (Promega, Madison, WI, USA).  RAW 264.7 cells 
(1.8×105 cells/mL) plated onto 96-well plates were pre-incubated 
for 18 hr and subsequently treated for 24 h at 37 °C with LPS (1 
μg/mL) coupled with various concentrations of UFE and DVE.  
An aliquot of 50 μL of the reaction mixture from the LDH 
cytotoxicity detection kit was added to each sample, and the 
reaction was incubated for 30 min at room temperature in 
darkness.  Then, 50 μL of the stop solution from the LDH kit was 
added to each sample to halt the enzymatic reaction, and the 
absorbance was measured at 490 nm using a microplate reader 
(PowerWave X340, Bio-tech Instruments, Inc., Vermont, USA).  
The cytotoxicity was determined as a percentage relative to the 
control group.  All experiments were performed in triplicate. 
 
Determination of NO Production 

RAW 264.7 cells (1.8×105cells mL−1) were plated in a 
24-well plate and, after 18 h, the cells were pre-incubated, at 37 °C 
for 1 h, in different concentrations of UFE and DVE.  They were 
then incubated at 37 °C for another 24 h with LPS (1 μg mL−1).  
The nitrite that accumulated in the culture medium, measured 
according to the method described by Yoon et al., (2010) and 
based on the classical Griess reaction, was taken as indicative of 
the NO production.  The culture medium was collected and 
centrifuged at 750×g to precipitate any remaining cell debris, the 
supernatant was collected and incubated at room temperature for 
10 min in an equal volume of Griess reagent (1% sulfanilamide 
and 0.1% naphthylethylenediamine dihydrochloride in 2.5% 
phosphoric acid), and the absorbance at 540 nm was measured in a 
microplate reader (PowerWave X340, Bio-tech Instruments, Inc., 
Vermont, USA).  The concentration of nitrite was estimated 
against a sodium nitrite standard calibration curve. 
 
Assays of PGE2 and pro-inflammatory cytokines 

RAW 264.7 cells (1.8×105 cells mL-1) were plated in a 
24-well plate containing 1 ml of DMEM medium for 18 h, 
followed by treatment with LPS in the presence of various 
concentrations of UFE and DVE.  After another 24 h of 
incubation, the PGE2 TNF-α, IL-6, and IL-1β in the cell culture 
medium were quantified using a competitive enzyme 
immunoassay kit (R&D Systems, MN, USA) according to the 
manufacturer’s instructions.  Values for the release of PGE2 TNF-
α, IL-6, and IL-1β were determined relative to the controls. 



Kim et al. / Journal of Applied Pharmaceutical Science 3 (09); 2013: 001-007                                              003 
 

Immunoblotting 
The IκB-α protein expression in macrophage RAW 264.7 

cells was determined as described in a previous report (Yang et al., 
2013).  The cells (2.5 × 106 cells/mL) were pre-incubated for 18 
hr, and then stimulated for 24 h by 1 μg/mL of lipopolysaccharide 
(LPS) in the presence of the ethyl acetate fraction of U. fasciata 
(UFE) and D. viridis (DVE).  After incubation, the cells were 
collected and washed twice with cold PBS.  The cell pellets were 
lysed with RIPA lysis buffer (Santa Cruz, CA, USA) 
supplemented with protease inhibitors and kept on ice for 30 min.  
The cell lysates were then centrifuged for 20 min at 12,000×g, 
4C, to remove cell debris.  The resulting supernatants were stored 
at -70C before being used in experiments.  The protein 
concentration was determined with a Coomassie Plus Protein 
Assay Reagent Kit (Pierce Chemical Co., Rockford, IL).  The 
protein lysates (40 μg) were denatured and separated on SDS–
polyacrylamide gels and were then transferred to polyvinylidene 
difluoride membranes (BIO-RAD, HC, USA).  Nonspecific 
binding sites on the membranes were blocked overnight with 5% 
nonfat dry milk at 4C and the membranes then incubated with 
mouse monoclonal anti-mouse IκB-α antibody (1:1,000, Cell 
Signaling Technology, Danvers, MA, USA) and β-actin antibody 
clone AC-74 (1:10,000, Sigma-Aldrich (St. Louis, MO, USA) at 
4C overnight.  Each membrane was further incubated for 30 min 
with a secondary peroxidase-conjugated goat IgG (1:5000, Jackson 
ImmunoResearch Laboratories, Inc., West Grove, PA, USA).  The 
immunoactive protein bands were developed with enhanced 
chemiluminescence kits (Amersham Life Sciences, Arlington 
Heights, IL, USA).  
 
Statistical analysis  

All sets of data were obtained in triplicate and are 
represented as the mean ± standard error (SE).  The statistical 
significance was determined for each treated group and analyzed 
by Student’s t-test.  P < 0.05 was considered statistically 
significant. 
 
RESULTS AND DISCUSSION 
 

The unique nature of marine environments and the 
biological diversity among marine creatures have led to the 
abundant attention given natural products derived from marine 
creatures as candidates for medicinal or cosmetic materials that 
can be used to develop novel therapeutic agents (Blunt et al., 
2013; Blunt et al., 2012; Kim and Pangestuti 2011).  Indeed, the 
pharmacology of marine natural products with anti-melanogenic 
(Ko et al., 2013), anti-aging (Balboa et al., 2013; Choi et al., 
2012), anti-inflammatory (Yang et al., 2013), and anti-bacterial 
(Lee et al., 2013) activity has been reported.  As a part of our on-
going screening program to evaluate the potential human benefit 
of Korean seaweeds, we have investigated in this study the ability 
of U. fasciata and D. viridis to decrease inflammatory mediators 
and cytokines, promising therapeutic targets for a nonspecific 
immune response.  We prepared ethyl acetate extracts from U. 

fasciata (UFE) and D. viridis (DVE) and examined their effects on 
LPS-stimulated inflammation in murine macrophage RAW 264.7 
cells.  Macrophages are essential for the host defense system and 
the secretion of various pro-inflammatory mediators such as nitric 
oxide (NO) and prostaglandin (PG)E2, in response to inflammatory 
stimuli such as bacterial lipopolysaccharide (LPS).  However, 
overproduction of these mediators, which can obtain from an 
inappropriate activation of the macrophages, leads to many 
chronic inflammatory conditions.  Therefore, inhibiting the pro-
inflammatory mediators and suppressing the macrophage 
mechanisms constitute a rational strategy for developing 
therapeutic agents, which could be useful to treat such chronic 
modern inflammatory diseases as atherosclerosis, diabetes, 
arthritis, infections, and cancer (Murakami and Ohigashi 2007).  

In this study, first we evaluated the effect of UFE and 
DVE on NO synthesis in activated macrophages. We used the 
Griess reaction, a spectrophotometric determination for nitrite, to 
measure the accumulation of nitrite (a stable, oxidation product of 
NO) in the medium.  NO production was determined in RAW 
264.7 cells stimulated for 24 h with LPS in the presence or 
absence of UFE and DVE.  As shown in Figure 1, compared with 
the control, LPS (1 µg mL-1)-stimulated RAW 264.7 cells 
generated significantly increased nitrite levels, and treatment with 
UFE and DVE inhibited NO synthesis.  The reduction in LPS-
induced nitrite was dose-dependent, with half maximal inhibitory 
concentration (IC50) of 15.0 μg/mL and 41.6 μg/mL, respectively 
(p < 0.05).  The fact that LDH assays showed that the 
concentration of viable activated macrophages had not been 
altered by the UFE and DVE indicates that the UFE and DVE 
inhibition of NO synthesis could not be atrributed simply to 
cytotoxic effects. 

Cyclooxygenase (COX)-2, another pro-inflammatory 
mediator, plays a pivotal role in the pathogenesis of inflammation, 
as it catalyzes the conversion of arachidonic acid to prostaglandins 
(PGs).  Therefore, we next examined the effects of UFE and DVE 
on the synthesis of PGE2 in LPS-stimulated RAW 264.7 
macrophages, measuring the PGE2  generated from RAW 264.7 
cells cultured with LPS (1 µg mL-1) in both the presence and the 
absence of UFE and DVE. As shown in Fig. 2B, the UFE 
suppression of LPS-induced PGE2 production were concentration-
dependent, with IC50 values of 46.6 μg/mL.  

Previous studies have demonstrated that the release of 
such inflammatory mediators as IL-1β, IL-6, NO, and PGE2 is 
stimulated by TNF-α, which modulates important cellular events 
such as gene expression and cellular proliferation, which lead to 
aggravation and progression of various diseases that contribute to 
tissue damage and multiple organ failure (Marcus et al., 2003).  
Similarly, Schrader et al., (2007) suggested that TNF-α-induced 
IL-6 production is a prerequisite for increased NO production.  
Thus, cellular manipulation for TNF-α, IL-6, and IL-1β syntheses 
is very important for regulating the inflammatory responses.  For 
this reason, we used the ELISA assay to investigate the effect of 
UFE and DVE on the production of pro-inflammatory cytokine 
(TNF-α, IL-6, and IL-1β) in LPS-stimulated RAW 264.7 
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macrophage cells.  As shown in Fig. 3A & B, pretreatment with 
UFE and DVE prevented the expected LPS-induced release of 
TNF-α; the reaction is dose-dependent, with IC50 values of 48.2 
μg/mL and 9.1 μg/mL, respectively.   

As expected from the potential effect of UFE and DVE 
on NO and TNF-α production, UFE and DVE also inhibited LPS-
induced IL-6 and IL-1β production, and the reaction is 
concentration dependent (Figs. 3C to 3F).  Since NF-κB must be 
activated before it can allow LPS or pro-inflammatory cytokines to 
induce either COX-2 or iNOS, we next asked whether or not UFE 
and DVE were involved in the NF-κB pathway in LPS-stimulated 
RAW 264.7 cells. The direct correlation between activation of  
NF-κB and rapid proteolytic        . 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

degradation of IκB-α has been well documented (Mauro et 
al.2009; Singh and Mittal 2008; Solt and May 2008). Indeed, 
many research works have shown that anti-inflammatory agents 
inhibit the activation of NF-κB by preventing the degradation of 
IκB-α (Yang et al., 2013; Yang et al., 2010; Yoon et al., 2009).  
Thus, in this study, we undertook to determine whether or not UFE 
inhibits the degradation of IκB-α. As shown in Fig. 4, LPS induced 
the transient degradation of IκB-α in LPS-stimulated RAW 264.7 
cells, whereas UFE and DVE prevented the degradation of IκB-α 
in a dose-dependent manner. These results suggest that the COX-2 
and iNOS expressions inhibited by UFE & DVE occurred via 
suppression of an IκB-α degradation, thereby preventing NF-κB 
activation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1:  Inhibitory effects of the ethyl acetate fraction of Ulva fasciata (UFE) and Desmarestia viridis (DVE) on nitric oxide (NO) production in RAW 264.7 

cells. The production of nitric oxide in a culture medium of cells that had been stimulated with LPS (1 μg/mL) for 24 h in the presence of UFE and DVE (25, 50, 
and 100 μg/mL) was determined.   NS-398 (20 μM) and 2-amino-4-methylpyridine (20 μM) were used as controls.  NO production was determined by the 
Griess reagent method and cytotoxicity by the LDH method.  The values displayed are the mean ± SEM of triplicate experiments.  * P<0.05; ** P<0.01 
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Fig. 2:  Inhibitory effects of UFE and DVE on the production of PGE2 in RAW 264.7 cells.  After pre-incubation for 18 h, RAW 264.7 cells (1.8 × 105 cells/mL) 

were stimulated with LPS (1 μg/mL) in the presence of UFE and DVE (25, 50, and 100 μg/mL).  PGE2 from the culture supernatants was measured with an 
enzyme-linked immunosorbent assay (ELISA) kit.  The values displayed are the mean ± SEM of triplicate experiments.  * P<0.05; ** P<0.01. 
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Fig. 3: Inhibitory effects of UFE and DVE on the production of TNF-α, IL-1β, and IL-6 in RAW 264.7 cells.  The production of TNF-α, IL-1β, and IL-6 in 
culture media of RAW 264.7 cells stimulated with LPS (1 μg/mL) for 24 h in the presence of UFE and DVE (25, 50, and 100 μg/mL) was determined.  The 

values displayed are the mean ± SEM of triplicate experiments.  * P<0.05; ** P<0.01. 
 

 
 

 
Fig. 4:  Inhibitory effects of UFE and DVE on the protein level of IκB-α in RAW 264.7 cells.  RAW 264.7 cells (2.5 × 106 cells/ mL) were pre-incubated for 18 

h, then incubated for 2 h with UFE and DVE (25, 50, and 100 μg/mL), and finally stimulated for 15 min with LPS (1 μg/mL).  The levels of pan-IκB-α were 
determined using an immunoblotting method.  β-actin antibody was used as a loading control. 
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CONCLUSION 
 

The sum of these results suggests that the inhibitory 
effects that UFE and DVE exert on the production of inflammatory 
mediators, including NO, PGE2, IL-1β, and IL-6, by LPS-
stimulated RAW264.7 macrophages are accomplished by 
preventing IkB-α from degrading.  These mechanisms could 
provide scientific support for the use of UFE and DVE as 
clinically proven anti-inflammatory herbal medicines. 
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