Potential Phytotherapy use of Artemisia Plants: Insight for Anti-Hypertension

Hmed Ben-Nasr¹, Mohamed Ali Ben Abderrahim², Mokhtar Salama¹, Kamila Ksouda¹, Khaled-Mounir Zeghal¹
¹Laboratory of Pharmacology, Medicine Faculty of Sfax; Rue Magida Bouliila 3029, Sfax- Tunisia.
²Institute of Arid Regions, Chenini; Gabes – Tunisia.

ARTICLE INFO

Article history:
Received on: 11/01/2013
Revised on: 22/02/2013
Accepted on: 15/03/2013
Available online: 30/05/2013

Key words:

ABSTRACT

Artemisia plants had been used to treat many diseases. While there many controversies concerning their effects on the cardiovascular system, Artemisia extracts could be envisaged as anti-hypertensive and to prevent cardiovascular damages. In raison of its bare toxicity, using the crude extracts will be of much importance in this field.

INTRODUCTION

Hypertension is a trait of multifactorial nature with both genetic and environmental influences; and usually associates with other diseases and pathological complications. Although the outstanding advances in medicine and related technologies and sciences, hypertension is still a worldwide major problem with a projected occurrence of 1.56 billion patients, in 2025 (Kim et al., 2010).

Many cardiovascular conventional drugs, even as efficient, did present adverse side effects; and so much safe therapeutic substances are in need. The therapeutic approaches become more and more ambiguous, when the disorder is associated with other pathological conditions such as diabetes mellitus and obesity. Else more, there are several mechanisms leading to hypertension.

Mending one of them, whenever ameliorates the case, did not totally relief the illness (refe?!1,2???). Recently, evidenced knowledge proved the utility and safety of various medicinal plants against many pathologic disorders (Mohanty et al., 2012). Artemisia, plants from the Asteraceae, had been used from the olden days against many diseases. Its therapeutic usefulness gained much popular and scientific approval; but this plant effects on the cardiovascular system remain unclear. So, this paper put forward new insight for the utilization of Artemisia plants to counteract cardiovascular diseases with special focus on hypertension.

Artemisia description

Artemisia genus (Asteraceae, Anthemideae, Artmisiianae) comprises hundreds (about 500) of different species, but its systematic classification remains discussed. In general five different subtaxa are considered (Torrell and Valles, 2001; Valles and McArthur; 2001).

This complexity arose from its genomic ‘polymorphism’, essentially the ploidy levels sought as the promoter mechanism for evolution and ecological adaptation (Badr et al., 2012; Torrell and Valles, 2001). Artemisia shrub occupies worldwide geographical areas; and attracted much attention for its highly economic values, in particular for its medicinal patterns. Rationally these plants were used from the olden days as, anti-venom, anthelmintic, antidepressant, diuretic, antispasmodic, hypoglycemic, anti-cancer etc., throughout the World; and were subjected to intensive scrutiny (Ashraf et al., 2010a,b; Gautam et al., 2003; Lai, 2009; Tardio et al., 2006).
Amongst these customary phytotherapeutic uses, the artemisinin which is isolated from the Chinese Artemisia annua L. showed important anti-malarial effects and owed great attention for treating such disease particularly in less developed countries (Wilcox et al., 2004; De Ridder et al., 2008; Muzemil, 2008; Tu, 2011; Ho, 1996; Germer and Sinar, 2010). As well, many other compounds have been characterized in this vegetal that act through disparate pathways in diseases’ curing.

Additionally, Artemisia extracts showed no real toxicological patterns, an indispensable feature for pharmaceutical use (Mukina, 2005; Mansi and Lahham, 2008). Besides its genetic and ecological diversity, inter and intra-specific variability in Artemisia chemical composition was proved, and might explain the diversity of extracts’ biological activities and ethno-pharmacy. Obviously, Artemisia extracts potently scavenge free radical compounds (Canadanovic-Brunet et al., 2005; Wang et al., 2007; Ayoughi et al., 2011; Wojcikowski et al., 2007) that are common traits of many diseases (Higdon et al., 2012; Dalle-Donne et al., 2006). However, there were controversial findings concerning Artemisia extracts on cardiovascular system regulation.

Chemical composition of Artemisia shrub

Artemisia shrub is a rich source of bioactive substances such as apigenin, hesperetin, kaempferol, luteolin, quercetin, 1,8-cineole; alpha- and beta-thujone, camphor, borneol) coumarin, acetylenes; and many other substances (table 1).

Nonetheless, important qualitative and quantitative variability in the chemical composition of the plant extracts, exist not only between different species, but also intra-specifically within the geographical localization and the ecological milieu (soil and climate) (Judzentiene and Buzelyte, 2006; Salido et al., 2004). For example, the total phenolic acids produced by in vitro cultured cells and extracted using 70% methanol, greatly differ between A. frigida, A. campestris and A. vulgaris plants (173,9, 75,2 and 69,5 mmol/g of dry weight; respectively) (Riedel et al., 2010). Further chemical changes could also be observed dependently on the biological cycle (Germination, Flowering, seedling and Fructification); and the used part of the vegetal (Judzentiene and Buzelyte, 2006).

Methods of extraction (aqueous, ethanol, etc.) and/or traditional application (drinking, ointment, inhalation, etc.) add much persuasive miscellany to its therapeutic potential (Salido et al., 2004; Vinatoru et al., 1997; Naczk and Shahidi, 2004). In addition, Artemisia organs are exceptionally enriched in Chloride, HCO₃, SO₄, fluoride, sodium, potassium, magnesium and many other minerals (Hussain et al., 2011; Ashraf et al., 2010). We will discuss some of these tremendously influencing factors, reliably to the sought cardiovascular effects of the plant.

Anti-hypertensive effects of Artemisia extracts

Using animal model, Esmaeili et al. (2009) proved that A. Persia extracts reversed the epinephrine induced- hypertension much more than enalapril, a conventional anti-hypertensive drug. However, the real mechanisms of these effects are still blurred (table 2). Such divergence could be attributed to the quantitative and qualitative chemical composition variability, as discussed above. In fact, many Artemisia derivatives might modulate the heart and vascular function either directly or indirectly through the control of endocrine and, or nervous cardiovascular regulations.

Neuronal modulation

Pharmacologically, the dosage and routes of administration are prominent influencing factors. The application of moxa, which is the inhalation of volatilized substances during the plant burning, may firstly affect the pulmonary tissues (Novak et al., 1993) and consequently exert pulmonary vasodilatation that probably help into pulmonary diseases healing such as asthma and bronchospasm (Chen et al., 2011). Interestingly, in this Chinese therapy, general body depression and heart rate decrease are common occurrences (Kim et al., 2010; Zhao et al., 2011). Many investigations brought substantial knowledge on such process. In sub-chronically or acutely exposed animals to Artemisia derivatives, a decrease in heart rate and systolic blood pressure was observed in association to aorta and heart lowered responsiveness to the contractile epinephrine and enhanced response to acetylcholine (Tigno et al., 2000; Esmaeili et al., 2009 and 2012; Mojarad et al., 2005).

The vascular smooth muscle relaxation was similarly induced in rabbit jejunum following A. herba-alba essential oils application (Aziz et al., 2012). To understand the mechanism of this relaxation, five falavonoids (jacoeoside, eupafolin, leuteolin, quercetin and apigenin) and three coumarins (aesculetin, aesculetin 7- methyl ether and scopoletin) have been extracted from the Korean mugwort (A. vulgaris L.) and assayed to determine their inhibitory capacities on the brain monoamine oxidase. This enzyme plays a key role in various neuromediators metabolism such as, epinephrine, nor-epinephrine, dopamine and serotonin (Lee et al., 2000).

The isolated Artemisia chemicals abolished this enzyme activity with IC₅₀ ranging from 1 to 45 μmol. This might result in epinephrine production fail, and thereby counteract hypertension (Lee et al., 2000). Consequently, it is suggested that Artemisia compounds modulates the cardiovascular function at the neuro-vascular (expectedly neuro-cardiac, too) bed through the regulation of neurotransmitters and their appropriate receptors interactions. Accordingly, smelling essential oils of A. dracunculus and A. vulgaris stimulates the sympathetic activity that changes the low frequency amplitude of blood pressure, perhaps via adrenaline concentration shift (Haze et al., 2002, Zhao et al., 2011).

In an elegant fashion, Luedtke and collaborators (2003) examined the competitive potential of various plants derivatives binding to D1 and D2 dopaminergic receptors in modified Human cells; Amongst these studied compounds, the A anomala (estragon) unspecifically binds to both receptors with a preference to D1 (D1:D2= 2). Interestingly, the extract inhibited the adenyl cyclase activity that mediated the signal transmission; but independently from binding to receptors (Luedtke et al., 2003).
In summary, the nervous mediated regulation of the cardiovascular function by Artemisia shrub extracts appears to be mediated by functional inhibition of enzymes controlling neurotransmitters release.

The competitive binding to adrenergic receptors is thought to be ineffective docking- interactivity, or following the compound interaction with an appropriate site in close proximity to adrenergic receptors that will interact with the compound in allosteric manner, like as how did hispidulin, a flavone found in many Artemisia species (Kavvadias et al., 2004). The direct (independent from receptor stimulation/ inhibition) abolishing of adenylyl cyclase and its mediated signal, constitutes another possible hypotensive mechanism for Artemisia extracts.

Endocrine regulation

Nitric oxide (NO) is prominent endogenous vasodilator acting through the activation of the soluble guanyly cyclase, and increases the cyclic guanosine-3':5'-monophosphate (cGMP) in smooth muscles (Bigaud et al., 1990). Whilst required at low concentration to maintain hemodynamic equilibrium, the NO excessive release contributes to circulatory shock and cell death through its potential to react with oxygen species (ROS). The ROS property of NO is engulfed into the endorsed oxidant/anti-oxidant system (Achike and Kwan, 2003).

In studies using knockout mice deficient to endothelial nitric oxide synthase (eNOS) and cyclooxygenases-1 (COX-1), Scotland and colleagues proved that NO, PG12 (prostaglandin 12) and EDHF (endothelium-derived hyperpolarizing factor) acts synergistically in retrieving blood pressure increase.

They concluded for a gender dependant-divergence on this process: (i) the eNOS and COX-1 deficiency profoundly breakdown the NO and PG12 hypotensive effect in males; (ii) in contrary, the EDHF pathway dominates the process in females (Scotland et al., 2005). In accordance, Ryu and colleagues (1998) mentioned that yomogin (A. verlotorum lamottee) potently inhibited the inducible form of NOS, and thereby will abolish the vasodilator NO production, as like as did extracts from A. absthinium (quercetin) (Mahmoudi et al., 2009) and A. herba alba (Messaoudene et al., 2011). Irrespectively, Artemisia extracts mostly induced a blood pressure decrease, and it is attended to get NO overproduction at the time of treatment (Yamahara et al., 1989a, b; Calderone et al., 1999). Since the iNOS inhibition was localized into blood cells (Ryu et al., 1998), it is supposed to marginally affect the vessels tonus. Consequently, the observed NO increase will probably originate from eNOS activity or released from adjacent nervous terminations. Instead of inducing NO production, Artemisia extracts appeared to stimulate the cGMP-dependent signaling pathway of the nitric oxide which contributes to smooth muscles relaxation.

Furthermore, other mediators, such as histamine and substance P, could mandate this induced hypotension (Okazaki et al., 1990).

Blood rheology and cardiovascular protection

Many researches showed that Artemisia compounds improve the blood rheology, essentially through their anti-thrombosis activity which prevents blood clot formation, reduces the shear stress and enhances blood circulation, especially in microvasculature (Harborne et al., 2000; Shahriyary and Yazdanparast, 2009). The modus operandi of anti-thrombosis might involve the peroxisome proliferator-activated receptors (PPARs) components stimulation (O’Brien et al., 2006). So, the increased mRNA expression of PPARs by A. iwayomogi, in combination to Morras alba and Melissa officinalis is envisaged to recover platelet aggregation and thrombosis (Lee et al., 2007). Furthermore, cardiovascular dysfunction and tissular damages are roughly subsequent to ROS generation (Dalle-Donne et al., 2006). Reestablishing the oxidant / anti-oxidant system equilibrium constitutes a basic mechanism for cardiovascular diseases therapy. Thus, it is fair-minded to apply Artemisia treatments to prevent these disorders, because of its powerful ROS scavenging potential (Akrout et al., 2012; Wojcikowski et al., 2007, Wang et al., 2007; Ayoughi et al., 2011; Canadanovic-Brunet et al., 2005, Kadri et al., 2011).

Infective endocarditis is a pathogenic disease. It is characterized by lesions consisting of vegetations including platelets, fibrin, microorganisms and inflammatory cells; in association to vessel bed disruption (Thiene and Basso, 2006). For that reason, Artemisia extracts could be envisaged as therapeutic for infective endocarditis; not only for its antimicrobial potential (Khanahmadi et al., 2009), but for the above mentioned patterns (anti-thrombotic, anti-oxidant) and its anti-inflammatory effects (Messaoudene et al., 2011), too. The cardiovascular dysfunction is, also, a frequent occurrence in lipids and glucose metabolic disorders. By lowering serum triglycerides, cholesterol and glucose concentrations; and reestablishing insulin function (Watcho et al., 2010 and 2011; Weinohrl, 2010), Artemisia holding substances may recover the vascular resistance and blood circulation.

Else more, given that the cardiovascular and urinary functions are tightly dependent one on the other, attenuating kidneys dysfunction is thought to ameliorate the blood circulation. In this view of point, the combined use of cordyceps (fungi) powder and artemisinin (2:4:0.6 w/w) efficiently protects the kidney function into patients with lupus nephritis unresponsive to corticosterone and cyclophosamide(reviewed by Wojcikowski et al., 2004).

The 20- hydroxyeicosatetraenoic acid inhibition by the sesame (a lignan isolated from Artemisia) will improve sodium reabsorption in the renal proximal tubule and consequently modulates natriuresis pressure (Miyata and Roman, 2005; Wu et al. 2009). Eventually, the richness of Artemisia plant in various minerals (Hussain et al., 2011; Ashraf et al., 2010) will improve the blood rheology and homeostasis.
Table 1: list of the first 10th dominant compounds characterized in hydro-distilled essential oils of various Artemisia species.

<table>
<thead>
<tr>
<th>A. hahssknechtir</th>
<th>A. abrotanum</th>
<th>A. dracunculus</th>
<th>A. herba-alba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camphor</td>
<td>12.4</td>
<td>(Z)-Anethole</td>
<td>51.7</td>
</tr>
<tr>
<td>α-Terpinene</td>
<td>9.9</td>
<td>Elemicin</td>
<td>48.7</td>
</tr>
<tr>
<td>Davanae ether</td>
<td>6.2</td>
<td>1,8 Cineole</td>
<td>12.5</td>
</tr>
<tr>
<td>Borneol</td>
<td>4.9</td>
<td>(E)-Aasarone</td>
<td>13.3</td>
</tr>
<tr>
<td>Ipsielon</td>
<td>4.5</td>
<td>Silphiperfol-5-en-3-ol A</td>
<td>6.2</td>
</tr>
<tr>
<td>Borneol acetate</td>
<td>3.7</td>
<td>Germacrene D</td>
<td>5.8</td>
</tr>
<tr>
<td>1,8 Cineole</td>
<td>3.7</td>
<td>Artedouglasia oxide D</td>
<td>4.7</td>
</tr>
<tr>
<td>Yomogi alcohol</td>
<td>3.5</td>
<td>Siphiperfol-5-en-3-one A</td>
<td>2.5</td>
</tr>
<tr>
<td>p-Cimene</td>
<td>3.2</td>
<td>Ocimene</td>
<td>2.3</td>
</tr>
<tr>
<td>Neryl acetate</td>
<td>3.2</td>
<td>Artedouglasia oxide C</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Values represent the maximal abundance (%) of compounds, as quantified using Gas-Chromatography, checked across the reported literature: Ayoughi, et al., 2011; BenJiali and Richard, 1980; Ghorbani-Ghouzdi et al., 2008; Judzentiene et al., 2006; KhanAhmadi et al., 2009; Kowalski et al., 2007 and 2011; Tajadod et al., 2012; and Salido et al., 2004.

Table 2: divsent effects of some Artemisia extracts or derivatives on the cardiovascular function.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Extract / compound</th>
<th>Effect</th>
<th>Refere</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. capillaris (flos)</td>
<td>Scoparone</td>
<td>Increase heart rate and coronary flow. Inhibition of the ST wave (antianginal action)</td>
<td>Yamaha et al., 1989a, b</td>
</tr>
<tr>
<td>A. annua</td>
<td>Artesunate (derived artemisinin)</td>
<td>Inhibit angiogenesis</td>
<td>Dell’Eva et al., 2004</td>
</tr>
<tr>
<td>A. verlotorum</td>
<td>Water extract</td>
<td>Transient hypotension in mesentery</td>
<td>Calderone et al., 1999</td>
</tr>
<tr>
<td>A. vulgaris</td>
<td>Methanol and water</td>
<td>No effect on heart and mean arterial pressure</td>
<td>Tigno et al., 2000</td>
</tr>
<tr>
<td>A. persia</td>
<td>Moxa</td>
<td>Reduces heart rate and systolic blood pressure</td>
<td>Esmaeili et al., 2012</td>
</tr>
<tr>
<td>A. vulgaris</td>
<td>Enhances acetylcholine induced endothelial-dependent relaxation of aorta</td>
<td>Zhao et al., 2011</td>
<td></td>
</tr>
</tbody>
</table>

Fig 1: overall schematic representation for the anti-hypertensive effect of Artemisia extracts. The circled sequences stand for experimentally or clinically evidenced actions of Artemisia extracts. Abbreviations: GMP: guanisodine monophosphate, MAO: monoamine oxidase, NO: nitric oxode, PGI2: prostaglandin I2; and ROS: active oxygen species.
Concluding remarks

Much scientific researches pointed toward the anti-hypertensive utility of Artemisia plants. However, there was no succinct experimental or clinical works delineating its real mechanisms and the involved contained compounds. Nevertheless, using whole extracts of Artemisia could better improve the cardiovascular disorder, since they combined many biological activities that are effective in concurrently healing many disorders (Figure 1). Likely, the effects of these plants extracts on blood pressure are thought to originate, essentially, from the inhibitions of the adenyl cyclase and stimulation of cGMP enzymes. In such manner, there will be dampened energetic machinery which is needed for vascular constriction. Perspective systemic works are required to outline the importance of whole Artemisia extracts against cardiovascular disorders. A pharmacological model putting into a head objective the anti-hypertensive and cardiovascular protector effects of Artemisia extracts will inevitably improve our understanding of such effects and delineate the utility of these plants in this field.

REFERENCES

Lai G. isolation of a compound from Artemisia douglasiana that inhibits the growth of the line of the rat liver tumor ascites. Cancer Res. 1983; 43: 3146-3151.

Naczk M., Shahidi F. extraction and analysis of phenolics in food. J. Chromatography A. 2004; 1045: 95-111.

Tu Y. the discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature Med. 2011; 17: 19-22.

