Effects of Aluminium Chloride Exposure on the Histology of Lungs of Wistar Rats

A.A. Buraimoh1* and S.A. Ojo2
1Department of Human Anatomy, Faculty of Medicine, Ahmadu Bello University, Samaru, Zaria, Nigeria.
2Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Samaru, Zaria, Nigeria.

ABSTRACT

Aluminium is present in many manufactured foods and medicines and is also added to drinking water for purification purposes. The lungs consist essentially of; the spongy respiratory tissue in which gaseous exchange occurs between blood and air, and a branching system of air tubes called bronchioles and bronchi which “pipe” air into and from the pockets and passageways of the spongy respiratory tissue. The purpose of this study was to evaluate the possible effects that aluminium chloride exposure could have on the histology of lungs of wistar rats. Twenty wistar rats were used for this study. They were well fed with grower mash, provided with adequate water and kept under good ventilation. The wistar rats were divided into five groups as follows: Group I was the control, group II was given 475mg/Kg, group III received 950mg/kg, group IV received 1,425mg/kg and group V received 1,900mg/kg of aluminium chloride through oral intubation for period of eight weeks. The wistar rats were humanely sacrificed, the lungs removed, fixed, processed and stained with Haematoxylin and eosin. Photomicrographs of the lungs showed congested blood vessels in the aluminium treated groups. Based on our observations, we therefore conclude that aluminium chloride exposure was detrimental to the histology of lungs.

INTRODUCTION

There are right lung and left lung that reside in the chest cavity and surround the heart. A thin membrane called the pleura covers the outer surface of the lung. The air we breathe gets into the lung through an airway (path for air). The right lung has three separate sections (upper, middle, and lower lobes), while the left lung has just an upper and a lower lobe. Each lobe has its own bronchi and blood supply. Further along in the airway, within the lung, the bronchi continue to divide into ever-smaller (narrower) tubes, much like the branches of a tree. Hence, the term tracheobronchial tree. The walls of the bronchi contain muscles that can cause the airway to expand (widen) or contract (narrow). Alveoli are lung air sacs made of simple squamous epithelial cells for diffusion of gases. Capillaries plus alveoli form the respiratory membrane for the exchange of gases between the blood and the lungs. The oxygen exchange in the lungs takes place across the membranes of small balloon-like structures called alveoli attached to the branches of the bronchial passages. These alveoli inflate and deflate with inhalation and exhalation (Shier et al., 2007; Gary and Kevin, 1996). The lungs are contained in the thorax. The thorax has a cage-like framework composed of the vertebral column, the ribs, the costal cartilages and the sternum. The bottom of the cage is a dome-shaped musculotendinous sheet, the diaphragm. The two lungs fill two large compartments in the thoracic cavity. Each compartment is lined with a fibroelastic membrane, parietal pleura, which are provided with an internal layer of squamous mesothelial cells. Likewise each lung is covered with a similar membrane, the visceral pleura, the outermost layer of which consists of squamous mesothelial cells. A film of fluid is present between the parietal pleura that lines each cavity and the visceral pleura that covers each lung; this fluid has lubricating value and allows the visceral pleura covering the lungs-hence, the lungs themselves- to slide during respiratory movements along the parietal pleura that lines the cavities (Arthur, 1974). The lungs consist essentially of; (1) the spongy respiratory tissue in which gaseous exchange occurs between blood and air, and (2) a branching system of air tubes called bronchioles and bronchi which “pipe” air into and from the pockets and passageways of the spongy respiratory tissue. The main bronchus from each lung connects with trachea and this, in turn, by means of the larynx, nasopharynx and
Role of aluminium intoxication in different organs in neurodegenerative diseases has been recently emphasized (Somova et al., 1997; Exley, 1999). Aluminium was said to have contributed to a variety of cognitive impairments in mice, rabbits, and rat pups (Muller et al., 1990; Yoke, 1985, Bilkei-Gorzo, 1993; Mari, 2001). Studies on workers exposed to aluminium dust in industrial environments demonstrate similar effects (Rifat et al., 1991; Bast-pettersen et al., 1994; White et al., 1992; Akila et al., 1999). The purpose of this study was to evaluate the possible effects that aluminium chloride exposure could have on the histology of lungs of wistar rats.

MATERIALS AND METHODS

This experiment was conducted in the Department of Human Anatomy, Faculty of Medicine, Ahmadu Bello University, Samaru, Zaria, Nigeria. The rules and regulations governing animal handling were strictly observed.

Experimental Animals

Total of twenty wistar rats were used for this experiment. The wistar rats were kept for two weeks before commencement of aluminium chloride administration. This was in order to allow the wistar rats acclimatized to the environment. The wistar rats were given adequate feed (grower mash), water and kept under good ventilation.

Experimental Design

The wistar rats were divided into five groups. The group I was the control that received distil water only while the remaining four groups received different concentrations of aluminium chloride as follows:

- Group II received 475mg/Kg,
- Group III received 950mg/kg,
- Group IV received 1,425mg/kg,
- Group V received 1,900mg/kg via oral intubation for duration of eight weeks.

Tissue processing and staining:

At the end of eight weeks of oral administration of aluminium chloride to the wistar rats, except group I that received distil water only, they were humanely sacrificed by anesthetizing them in a suffocating chamber using chloroform. The thoracic regions of the wistar rats were dissected and the lungs were removed, and immediately fixed in formalin. After fixation, the lungs were transferred into an automatic processor where they went through a process of dehydration in ascending grades of alcohol (ethanol) 70%, 80%, 95% and absolute alcohol for 2 changes each. The tissues were then cleared in xylene and embedded in paraffin wax. Serial sections of 5 micron thick were obtained using a rotary microtome. The tissue sections were deparaffinised, hydrated and stained using the routine haematoxylin and eosin staining method (H&E). The stained sections were examined under the light microscope fitted to a digital camera and lap top.
Plate 1: Photomicrograph of Normal lung of Wistar Rat of group I. X100, H&E.

Plate 2: Photomicrograph of lung of Wistar Rat of group II showing congested blood vessel engorged with blood. X100, H&E.

Plate 3: Photomicrograph of lung of Wistar Rat of group III showing congested blood vessel engorged with blood. X100, H&E.
There is little indication that aluminium is acutely toxic by oral exposure despite its widespread occurrence in foods, drinking-water, and many antacid preparations (WHO, 1997). In 1988, a population of about 20 000 individuals in Camelford, England, was exposed for at least 5 days to unknown but increased levels of aluminium accidentally distributed to the population from a water supply facility using aluminium sulfate for treatment. Symptoms including nausea, vomiting, diarrhoea, mouth ulcers, skin ulcers, skin rashes, and arthritic pain were noted. It was concluded that the symptoms were mostly mild and short-lived. No lasting effects on health could be attributed to the known exposures from aluminium in the drinking-water (Clayton, 1989).

Many researchers have found elevated Aluminium levels to be associated with a decline in visual memory, attention, concentration, frontal lobe function and lower vocabulary scores in hemodialysis patients (Bolla et al., 1992). In our study, the histology of lungs of wistar rats in control group I showed normal structures of the tissue; the aluminium treated groups II to V showed congested blood vessel engorged with blood, with areas of the alveolar spaces/ducts filled with materials that covered some of the alveolar ducts (See Plates II-V) when compared with the control group (See plate I). This was in concord with findings that revealed that aluminium chloride exposure was implicated to have negative effects on behavioural endpoints of wistar rats (i.e. alters behaviour), have negative effects on anxiety-related behaviour of wistar rats as it increased the rate of anxiety in aluminium treated rats, said to have neurodegenerative effects on the histology of cerebral cortex of adult wistar rats especially at higher dose and had detrimental effects on the kidney of wistar rats (Buraimoh, et al., 2011a; Buraimoh, et al., 2011b; Buraimoh, et al., 2012a;
Buraimoh and Ojo 2012a). But it was in contrast with other studies which revealed that aluminium chloride exposure had no effects on the histology of the epididymis, stomach and that the effects on the cerebral cortex of adult wistar rats were not transferable to the offspring (Buraimoh, et al., 2012b; Buraimoh and Ojo, 2012b; Buraimoh, et al., 2012c). Our present study therefore revealed that aluminium chloride exposure was detrimental to the histology of the lungs of wistar rats (Plates II-V) and hence could in turn negatively affect respiration. Therefore, caution should be taken in its usage.

CONCLUSION

Based on our observations, we therefore conclude that aluminium chloride exposure had detrimental effects on the histology of the lungs of wistar rats, which was eminent in the congested blood vessel engorged with blood, with evidence of congestion and hemorrhage.

ACKNOWLEDGEMENT

The authors wish to express their profound gratitude for the financial contribution of the Vice Chancellor, as well as, the management of Ahmadu Bello University, Zaria, Nigeria towards the publication of this research work. Your contribution towards the successful publication of this work is highly appreciated.

REFERENCE

Buraimoh AA and Ojo SA. Effects of Aluminium Chloride Exposure on the Histology of the Kidney of Wistar Rats. Int J Bio Pharm. Allied Sci.; 2012a; I(11), 1556-1568

Buraimoh AA, Ojo SA, Hambolu JO and Adebisi SS. Effects of Aluminium Chloride Exposure on the Histology of the Cerebral Cortex of Adult Wistar Rats. Journal of Biology and Life Science. 2012a; Vol.3, No.1. DOI: 10.5296/jbls.v3i1.1421. @Macrothink Institute.

