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LCT is a synthetic pyrethroid, developed as an insecticide for agricultural and public health applications. The 
purpose of this study was to investigate the adverse effects of LCT on rat liver and to elucidate hepatoprotective 
ability of CMN against LCT. Liver injury in male rats was induced by oral administration of LCT at a dose of 0.6 
mg/kg/day for 4 weeks. CMN (200 mg/kg/day by oral administration) was used as a protective agent for the same 
period as LCT. Serum and liver samples were collected from all groups at the end of the experimental period. 
LCT-intoxication elicited significant elevations in hepatic markers enzymes (ALT and AST) and MDA 
concomitant with significant declines in the antioxidant enzymes (GPx, GST and GR), GSH and TP levels. In 
addition, it was noted that LCT-intoxicated group exhibited a degree of liver DNA fragmentation. Oral intake of 
CMN to LCT-intoxicated rats exhibited significant decrease in liver enzymes activities and lipid peroxidation, 
significant increase in antioxidant enzymes activities and partial inhibition in DNA fragmentation. Therefore, it 
was concluded that CMN has the ability to scavenge free radicals, protect against oxidative stress and prevent 
DNA fragmentation induced by LCT intoxication. 
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INTRODUCTION 
 

Pesticides are used for welfare of human beings but their 
adverse impacts on non-target organisms are significant. Pesticides 
are one of the most potentially harmful chemicals introduced into 
the environment and indiscriminate use of it is on increase. In the 
last years, the use of pyrethroids has been increasing since 
restrictions have been placed on many of the organophosphorus 
insecticides (Soderlund et al., 2002). Pyrethroids chemically are 
the structural derivatives of naturally occurring pyrethrins and have 
greater potency. Synthetic pyrethroids account for more than 30% 
of insecticides used worldwide in agricultural, domestic and 
veterinary applications (Prasanth and Rajini, 2005). It has become 
an economically and environment friendly group of insecticides as 
these possess low mammalian toxicity, rapid  decomposition in 
soil, leave no residue in biosphere and are stable in sunlight (Kale 
et al., 1999). 

 However, these insecticides have proved to be detrimental 
to human beings, fish and domestic animals by altering various 
metabolic activities (Adhikari et al., 2006). Lambda-cyhalothrin 
(LCT), a synthetic type II pyrethroid insecticide has extensive uses 
as an agro-pesticide (Fetoui et al., 2009). LCT is widely used in 
Egypt and valued for its broad-spectrum control on a wide range of 
pests in a variety of applications such as the protection of cotton, 
cereals and vegetables as well as in public health application against 
insect, ticks and flies which may act as disease vectors (Abdel Aziz 
and Abdel Rahem, 2010). Residues of LCT have been reported in 
vegetables and fruits (Turgut et al., 2011), milk and blood of dairy 
cows (Bissacot and Vassilieff, 1997) and also in cattle meat 
(Muhammad et al., 2010). Placental transfer of LCT has been 
observed in goats (Oliveira et al., 2000). Consistent with its 
lipophilic nature (Michelangeli et al., 1990) LCT has been found to 
accumulate in biological membranes leading to oxidative damage. It 
was reported that LCT caused oxidative stress by altering 
antioxidant systems and increasing lipid peroxidation in mammals 
(El-Demerdash, 2007; Fetoui et al., 2008, 2009). 
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Other possible mechanisms of cytotoxicity of LCT could 
be nitric oxide production or DNA single strand breaks (Righi and 
Palermo-Neto, 2005). Although the organism has several 
biological defence mechanisms against intracellular oxidative 
stress such as superoxide dismutase (SOD), catalase (CAT), 
glutathione reductase (GR) and glutathione-S-transferase (GST), 
non-enzymatic antioxidants such as caratenoids, vitamin E, 
vitamin C and glutathione, can also act to overcome the oxidative 
stress (Evans and Halliwell, 2001). A positive correlation has been 
established between dietary supplementation with certain 
vegetables and plant products and the reduction of toxic effects of 
various toxicants and environmental contaminants (Nandi et al., 
1997). During the last decades, phenolic compounds have received 
considerable attention due to their antioxidant properties (Gil-
Izquierdo et al., 2001). Curcumin (CMN), a phenolic 
phytochemical responsible for the yellow colour of turmeric 
(Curcuma longa), has been designated to be a forceful anti-
inflammatory, anti-cancer and antioxidant agent, and is under 
preclinical trial for cancer prevention (Strimpakos and Sharma, 
2008). It also has potential therapeutic effects against 
neurodegenerative, cardiovascular, pulmonary, metabolic and 
autoimmune diseases (Aggarwal and Harikumar, 2009). In 
addition, CMN exerted hepatoprotective effects in various animal 
models of liver injury such as carbon tetrachloride (Fu et al., 
2008), endotoxin (Kaur et al., 2006) and thioacetamide (Shapiro et 
al., 2006). There is evidence that CMN enhances liver 
detoxification by increasing the activity of glutathione-S-
transferase, an enzyme which conjugates glutathione with a wide 
variety of toxins to facilitate their removal from body (Piper et al., 
1998). Recently, CMN has been reported to ameliorate lindane-
induced oxidative damage in rat liver (Singh and Sharma, 2011) 
and ameliorate cypermethrin-induced oxidative stress in liver, 
kidney and brain of Wistar rats (Sankar et al., 2012). Therefore, 
the aim of the concurrent study was to assess the effects of LCT on 
liver enzymes [alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST)], lipid peroxidation (LPO), antioxidant 
enzymes (GPx, GST and GR), GSH content and DNA 
fragmentation in male rats. Also, this study aimed to determine the 
potency of CMN to modulate hepatic damage induced by LCT. 
 
MATERIALS AND METHODS 
 

Chemicals                       
 LCT (C23H19ClF3NO3) and CMN were obtained from 
Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). All other 
chemicals used were of the finest analytical grade. 
 
Animals 
 Twenty four adult male albino rats (Rattus norvegicus), 
weighing 120-150 g were used in this study. The animals were 
obtained from the National Research Centre, Dokki, Egypt. Rats 
were housed in wire-floored cages under standard laboratory 
conditions of 12 h/12 h light/dark, 25±2oC with free access to food 

and water. All animals were acclimatized to laboratory condition 
for a week before commencement of experiment. 
 
Experimental design 
 The animals were randomly divided into four groups of 
six rats each. The LCT and CMN were orally administered daily 
for 4 weeks. 
Group (I): Normal untreated rats served as control. 
Group (II): Rats were administered CMN at 200 mg/kg/day (Fu et 
al., 2008). CMN was suspended in sterile PBS. 
Group (III): Rats were received LCT in a dose of 0.6 mg/kg/day 
(Sharma et al., 2010). 
Group (IV): Animals were received LCT (0.6 mg/kg/day) and 
CMN (200 mg/kg/day). 
At the end of the experiment, all animals were killed under light 
ether anesthesia. Animals were rapidly dissected and blood was 
collected by cardiac puncture and serum was obtained by blood 
centrifugation at 1500 × g for 10 min, at 4°C. Livers were quickly 
excised, washed in ice-cold saline, weighed and homogenized in 
ice-cold physiological saline. Liver homogenate was divided into 
portions and stored at –70°C until analyzed. 
 
Preparation of tissue homogenate 
 The liver was homogenated (10% w/v) in Tris-HCl (0.1 
M, pH 7.4). Homogenates were centrifuged at 1000×g for 10 min 
at 4°C.  
 
Assessment of Liver Function 
 Liver functions were assayed by measuring serum 
alanine aminotransferase (ALT) and aspartate aminotransferase 
(AST) enzyme activities according to Reitman and Frankel (1957). 
 
Determination of lipid peroxidation 
 Lipid peroxidation (LPO) levels were measured in tissue 
homogenates as thiobarbituric acid reactive substance (TBARS). 
TBARS was estimated as malondialdehyde (MDA) by using the 
method of Ohkawa et al. (1979). 
 
Determination of antioxidant enzymes 
 GST activity was estimated by determining the rate of 
formation of glutathione (GSH) and 1-chloro-2, 4, dinitrobenzene 
(CDNB) conjugates. The conjugate was measured colorimetrically 
at 340 nm (Habig, et al., 1974). 
 GR activities were assessed by measuring the reduction 
of oxidized glutathione to reduced glutathione by NADPH at 340 
nm (Horn, 1971).  
 GPx catalyses the oxidation of glutathione by cumene 
hydroperoxide in the presence of glutathione reductase and 
NADPH, the oxidized glutathione is immediately converted to the 
reduced form with a concomitant oxidation of NADPH to NADP+ 
(Matkovics et al., 1998). The decrease in absorbance of NADPH 
was measured at 340 nm. 
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Determination of glutathione and total protein 
 GSH content was assayed by the method of Ellman 
(1959). The method utilized metaphosphoric acid for protein 
precipitation and 5,5-dithiobis (2-nitrobenzoic acid) (DTNB) for 
color development and its density was measured at 412 nm. The 
concentration of proteins was determined by the procedure of 
Lowry et al. (1957) using bovine serum albumin as standard. 
 
DNA fragmentation analysis 
 Genomic DNA was isolated from liver homogenate with 
the Qiamp DNA mini kit according to the manufacturer’s 
instructions and electrophoresed on a 2% agarose gel stained with 
ethidium bromide (Sambrook et al., 1989).  
 The gel was then photographed under ultraviolet 
luminescence. In these conditions, damaged DNA appears as a 
ladder consisting of DNA fragments, whereas intact DNA is high 
molecular weight and does not migrate very far into the gel. 
 
Statistical analysis 
 Data are presented as means ± SE and were analyzed by 
ANOVA using the SPSS version 13 statistical program. 
Hypothesis testing methods included one-way analysis of variance 
(ANOVA) followed by least significant difference (LSD). 
 
RESULTS 
 

 Four weeks CMN treatments did not induce relevant 
alterations in the rats in such a way that no differences were 
observed between this group and the control one. 
 
Effect of CMN on LCT-induced alteration in ALT and AST 
 ALT and AST levels from rats exposed to LCT and/or 
CMN are presented in Table 1. There were differences in the 
enzymes activities among the different treatment groups.  
  
Table 1: Influence of oral administration of CMN on serum hepatic enzymes 
(ALT and AST) of LCT-treated rats. 
 

Groups ALT (IU/L) M ± SE AST (IU/L) M ± SE 
Control 28.73 ± 0.71 49.32 ± 0.99 
CMN 28.01 ± 0.92 b*** 48.37 ± 1.42 b*** 
LCT 68.82 ± 2.41 a*** 87.50 ± 1.04 a*** 
LCT + CMN 33.20 ± 1.28 a*/b*** 51.20 ± 0.92 b*** 
 

All data are expressed as means (M) of six rats ± standard error (SE).  a* 
Significant as compared to control group at P< 0.05, a** highly significant as 
compared to control group at P< 0.01, a*** very highly significant as compared 
to control group at P< 0.001. b* Significant as compared to LCT group at P< 
0.05, b** highly significant as compared to LCT group at P< 0.01, b*** very 
highly significant as compared to LCT group at P< 0.001. 
 
 

 
 
 
 
 
 
 
 

Oral administration of LCT significantly elevated serum 
concentrations of ALT and AST compared to control rats. CMN   
combination   treatment to LCT-treated rats significantly reduced 
the activities of AST and ALT enzymes compared with those of 
LCT-treated rats. 
 
Effect of CMN on LPO and antioxidant enzymes in LCT- 
treated rats 
 LPO level in liver was significantly increased in LCT-
treated animals when compared to normal. Treatment with CMN 
at 200 mg/kg showed significant decrease in LPO level when 
compared to LCT-treated group (Table 2). The activities of 
antioxidant enzymes (GPx, GST and GR) were significantly 
reduced than the control group. All these mentioned changes were 
significantly increased as compared to LCT-treated rats upon 
administration of CMN (Table 2). 
 
Effect of CMN on LCT-induced hepatic GSH and TP 
 Administration of LCT to rats for 4 weeks led to a 
significant decrease in liver GSH and TP levels as compared to 
normal control rats. Treatment with CMN attenuated the LCT-
induced decrease in GSH and TP. 
 
Effect of CMN on liver genomic DNA in LCT-treated rats 
 Results presented in figure 1 showed marked DNA 
laddering induced by LCT compared with control. CMN 
administration to LCT-treated animals showed a marked decrease 
in DNA laddering. 
 

 
 

Fig. 1: DNA fragmentation was assessed in rat liver of all experimental groups. 
Lane 1: DNA molecular weight marker; lane 2: control group; lane 3: CMN-
treated rats; lane 4: LCT-treated rats; lane 5: rats treated with LCT plus CMN. 
 
 
 
 
 
 
 
 
 

Table 2: Influence of oral administration of CMN on LPO, GPx, GST and GR of LCT-treated rats. 
 

Groups LPO (nmol/mg) M ± SE GPx (U/mg) M ± SE GST (nmol/min/mg) M ± SE GR (nmol/min/mg) M ± SE 
Control 1.59 ± 0.03 2.38 ± 0.08 407.50 ± 1.34 127.83 ± 2.94 
CMN 1.51 ± 0.05 b*** 2.48 ± 0.07 b*** 412.83 ± 1.74 b*** 133.83 ± 1.43 b*** 
LCT 4.48 ± 0.13 a*** 1.76 ± 0.09 a*** 323.17 ± 2.71 a*** 99.93 ± 1.21 a*** 
LCT+CMN 1.88 ± 0.04 a*/b*** 2.04 ± 0.03 a**/b** 401.33 ± 0.99 a**/b*** 113.71 ± 2.21 a***/b*** 
 

All data are expressed as means (M) of six rats ± standard error (SE).  a* Significant as compared to control group at P< 0.05, a** highly significant as compared to 
control group at P< 0.01, a*** very highly significant as compared to control group at P< 0.001. b* Significant as compared to LCT group at P< 0.05, b** highly 
significant as compared to LCT group at P< 0.01, b*** very highly significant as compared to LCT group at P< 0.001. 
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DISCUSSION 
 

 The present study was conducted in order to investigate 
the role of CMN in alleviating oxidative stress in rat livers 
produced by LCT treatment that produces liver injury and DNA 
fragmentation. Liver is the site of biotransformation by which a 
toxic compound has been transformed to a less harmful form to 
reduce toxicity (Hodgson, 2004). However, this will damage the 
liver cells and produce hepatotoxicity. The most prominent result 
of liver damage is the release of intracellular enzymes such as 
ALT and AST into the blood stream, therefore serum ALT and 
AST levels can serve as indicators of liver status (Ogunlade et al., 
2012). 
 Concurrently, the increase in ALT and AST levels 
indicated that LCT could induce hepatic dysfunction. These 
findings were in accordance with Yousef et al. (2006) and Fetoui 
et al. (2009) who declared that pyrethroids exposure can produce 
hepatic injury, causing increased serum ALT and AST activities. 
CMN supplemented to normal rats showed unchanged 
transaminase activity (Kaur et al., 2006). Moreover, CMN showed 
a protective effect against LCT-induced hepatic dysfunction 
through decreasing the levels of ALT and AST towards their 
respective normal value that is an indication of stabilization of 
plasma membrane as well as repair of hepatic tissue damage 
caused by LCT. These results were in agreement with Sankar et al. 
(2012), who reported that liver enzymes were significantly 
improved after CMN administration to cypermethrin-intoxicated 
rats. 
 Pesticides induce oxidative stress which leading to the 
generation of free radicals, changes in antioxidants levels and lipid 
peroxidation (Ender and Onder, 2006). Although LCT itself does 
not generate free radicals directly, it indirectly generates various 
radicals such as superoxide radical (O2

-), and hydroxyl radical 
(OH˙) thus causing damage to proteins, lipids and DNA by 
oxidation (Kale et al., 1999). The level of TBARS presently was 
significantly elevated in liver tissue of LCT-intoxicated rats. In 
accordance with the data obtained from this study, El-Demerdash, 
2007 and Fetoui et al., 2009, reported that LCT administration 
resulted in a significant increase in TBARS production. Lipid 
peroxidation arises from the reaction of free radicals with lipids 
and this is considered to be an important feature of the cellular 
injury brought by free radical attack (Hoek and Pastorino, 2002).  

Administration of CMN significantly reduced the levels 
of LPO. This observation demonstrates the anti-peroxidative effect 
of CMN on LCT toxicity. The presence of π-conjugation in CMN 
makes it more hydrophobic, which promotes its localization in the 
lipid bilayer membrane and lipid solubility. This allows the 
reaction of CMN with the lipid peroxyl radicals and it acts as a 
chain terminating antioxidant (Sankar et al., 2010).  
 In the present study, the activities of antioxidant enzymes 
(GPx, GST and GR) and GSH were decreased significantly in 
LCT-treated rats. In consistent with these results, the decreased 
activities of antioxidant enzymes were observed in rat liver (Fetoui 
et al., 2009), in rat kidney (Fetoui et al., 2010) and in fish liver 
(Oreochromis niloticus) (Piner and Üner, 2012). They indicated 
the failure of antioxidant defense system to overcome the influx of 
ROS induced by LCT exposure. LCT toxicity might be due to the 
release of cyanohydrins, which are unstable under physiological 
conditions and further decompose to cyanides and aldehydes 
which in turn could act as a source of free radicals (World Health 
Organization, 1990). Depletion of tissue GSH is one of the major 
factors that permit lipid peroxidation and subsequent tissue 
damage (Huang et al., 2003). GSH is known to function as a 
substrate for GPx and GST (Darbar et al., 2010). The activities of 
GPx and GST in this study were reduced as a result of LCT 
treatment, which may be attributed to the unavailability of GSH. 
CMN worked as an antioxidant and its administration to LCT-
treated rats increased the levels of non-enzymatic antioxidant 
GSH, enzymatic antioxidants GPx, GST and GR and protein levels 
in animals exposed to LCT. CMN reduces the oxidative stress in 
animals, by its high ROS scavenging capacity and by protecting 
the antioxidant enzymes from being denatured. Protective role of 
CMN has been reported by other investigators using paracetamol 
(Piper et al., 1998; Yousef et al., 2010) and aflatoxin (Verma and 
Mathuria, 2008) induced liver damage models. 
 DNA fragmentation observed in the present study is the 
normal consequence of oxidative stress that was demonstrated 
through elevation in LPO, reduction in antioxidant enzymes (GPx, 
GST and GR) and glutathione content in rat liver. This is also 
consistent with previous studies where DNA fragmentation was 
induced by LCT in rat lymphocytes (Sharma et al., 2010) and by 
cypermethrin in rat brain (Hussien et al., 2011). CMN 
supplementation to LCT-treated group produced low DNA 
fragmentation when compared to the LCT-treated group. This 
effect can emerge the benefit of CMN supplementation to 
minimize the risk of DNA fragmentation caused by LCT toxicity. 
These results coincide with that of Siddique et al. (2010) who 
stated that CMN inhibits the generation of ROS that are 
responsible for the DNA damage. Also, this action of CMN was 
explained by Piwocka et al. (2001) who stated that CMN leads to 
attenuated DNA fragmentation due to the elevation of GSH. In 
conclusion, the present study authenticates the importance of 
CMN in protecting animals against LCT-induced hepatotoxicity 
through attenuating lipid peroxidation, increasing the activities of 
antioxidant enzymes and alleviating DNA fragmentation. 
 

Table. 3: Influence of oral administration of CMN on GSH and TP of LCT-
treated rats. 

Groups GSH (nmol/mg) M ± SE TP (g/100g) M ± SE 
Control 35.10 ± 0.62 6.20 ± 0.09 
CMN 36.95 ± 1.26 b*** 6.24 ± 0.27 b*** 
LCT 19.89 ±  0.92 a*** 4.82 ± 0.19 a*** 
LCT + CMN 30.27 ± 1.05 a**/b*** 5.66 ± 0.21 b** 

 

All data are expressed as means (M) of six rats ± standard error (SE).  a* 
Significant as compared to control group at P< 0.05, a** highly significant as 
compared to control group at P< 0.01, a*** very highly significant as 
compared to control group at P< 0.001. b* Significant as compared to LCT 
group at P< 0.05, b** highly significant as compared to LCT group at P< 
0.01, b*** very highly significant as compared to LCT group at P< 0.001. 
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