Development of a Topical Formulation Containing S. Lutea Extract: Stability, In vitro Studies and Cutaneous Permeation

Vera Isaac, Bruna G. Chiari, Kamila Miglioli, Raquel Moreira and José Ricardo Soares Oliveira, Hérida Salgado, Perla Relkin, Marcos A. Corrêa, Ana Salgado, Helena M. Ribeiro

ABSTRACT

Flavonoids have been widely incorporated into cosmetic and dermatological formulations, affording benefits such as antioxidant action, improved skin tone and fewer lines and wrinkles. Brazil has a huge biodiversity, with one of the richest floras in the world, and existing studies justify the quest for greater research efforts in this area. The cajazeira (Spondias lutea), a plant of the Anacardiaceae family from tropical America, is widely disseminated in Brazil. This plant was chosen because of the presence of flavonoids that exhibit antioxidant activity. The purpose of this research was to develop a stable topical formulation containing Spondias lutea extract with the aim of preventing skin diseases caused by UV radiation. Hydroethanolic extract of Spondias lutea fruit was prepared and assayed for its the flavonoids content. The antioxidant activity was estimated by DPPH and superoxide assay. The physicochemical stability and skin permeation of the cream containing 8% (w/w) of extract were assessed. The results showed that the S. lutea extract possessed antioxidant activity, and that it is possible to obtain a stable cosmetic containing the extract, which is able to penetrate the skin. Thus, it is possible to use this extract to produce an anti-aging cosmetic.

Keywords: antioxidant, emulsion, cutaneous permeation, quercetin, rutin, Spondias lutea.

INTRODUCTION

Cosmetology has made great progress, both in the development of products of higher quality and efficiency, and in the discovery of new raw materials. Moreover, consumers have become interested in using natural products that are less aggressive than synthetic ones. Thus, the cosmetic industry is seeking alternative products of natural origin and avoiding the use of synthetic ingredients (Packer and Da Luz, 2007). In this context, it is important to search for new active substances with potential cosmetic value. Currently, there is a strong trend in the use of plant raw materials, enabling the development of phyto cosmetics. Phyto cosmetics are cosmetic products made with natural plant products or raw materials of natural origin (Isaac et al., 2008). The huge Brazilian biodiversity furnishes a wide range of plant secondary metabolites that possess activities sought by the cosmetic industry. The flavonoids are among the secondary metabolites extracted from plants with great cosmetic potential because they have antioxidant, anti-inflammatory, antibacterial and other activities (Packer and Da Luz, 2007; Perruchon, 2002).
In view of the cosmetic potential found in flavonoids and the significant presence of flavonoids in the cajá-manga fruit, the latter was chosen for the development of a new cosmetic. Cajazeira (Spondias lutea L. sometimes also referred to as Spondias mombin L.) is a tropical American tree that belongs to the family Anacardiaceae. It is widespread in Brazil, especially in the Northeast (Bora et al., 1991; Gomes, 2007; Schultz, 1991). The cajá-manga, fruit of the cajazeira, shows excellent sensorial quality, thus, in the Brazilian Northeast region its pulp is widely used and commercialized (Pinto et al., 2003). The aim of this study was to assess the properties of the S. lutea fruit extract and to develop a physically stable cream formulation containing this extract to be applied topically, to prevent the skin damage caused by UV radiation. The skin permeation of flavonoids through cellulose, silicone and skin membranes was also studied.

MATERIALS AND METHODS

Spondias lutea extract

The extract was prepared in 70 °GL ethanol by percolation of the fresh fruit cut in small pieces, using 200 g of the fruit and 1000 mL of the solvent, which was evaporated after the extraction to leave a dark syrup.

Estimation of phenolic compounds and flavonoids in the Spondias lutea extract

The amount of total phenolics in extracts was determined by the Folin-Ciocalteau procedure described by Singleton and Rossi (1965) and Kähkönen et al. (1999). A sample of 400 µL of fruit extract (3 mg/mL) was mixed with 2 mL of the Folin-Ciocalteau reagent (tenfold diluted) in a test tube. After 8 minutes, 1.6 mL of sodium carbonate (7.5%) were added to the reaction tube. The absorbance was read in a spectrophotometer (Hitachi U-2001), after 30 minutes, at 765 nm. The results were calculated from an analytical curve of gallic acid, so the total phenolic content was expressed as gram of gallic acid equivalents per 100 g of the S. lutea extract. Flavonoid content was analyzed by the method described by Zishen et al. (1999). Aliquots of 5 mL of a 6 mg/mL solution of extract were allowed to react with 0.3 mL of 5% NaNO₂. After five minutes, 0.6 mL of 10% AlCl₃ was added. Six minutes later, 2 mL of 1M NaOH was added and the volume completed to 10 mL with distilled water. The absorbance was read at 510 nm in a spectrophotometer. The results were calculated from an analytical curve for quercetin and rutin, allowing the quantity of flavonoids equivalent to quercetin and rutin in the S. lutea extract to be estimated. The assays were repeated three times.

Assessment of the antioxidant activity of Spondias lutea extract

DPPH assay

Aliquots of the hydro-ethanolic extract were added to a DPPH ethanolic solution to a final concentration of 60 µM DPPH. A control tube, without extract but with the same volume of ethanol to substitute the sample, was used to measure the maximum absorbance of the test at λ = 531 nm, corresponding to 100% of free radical in solution. In the presence of the antioxidant test sample, there was a fall in the absorbance compared to the control, proportional to the antioxidant potential and to the concentration added. Therefore, in order to evaluate the antioxidant potential of the S. lutea Hydro-ethanolic extract, a range of concentrations of extract were tested. The absorbance of each reaction mixture was evaluated at 531 nm after incubation for 30 minutes in the dark. The percentage of inhibitory activity was calculated as in Cundred et al. (1997). All tests were performed twice.

Superoxide radical assay

In two tubes for each concentration of S. lutea extract, the following components were added in this order to the reaction mixture:

1. Buffer (25 mM sodium pyrophosphate–sufficient to give a final volume of 1 mL),
2. 25 µL of 372 µM Phenazinemethosulfate (PMS) freshly prepared,
3. 75 µL of 600 µM nitroblue tetrazolium (NBT), freshly prepared,
4. Extract sample (in sufficient volume to each final concentration),
5. 50 µL of 1560 µM NADH.

The solution was mixed and after 90 seconds the reaction was stopped by adding 100 µL of glacial acetic acid, followed by 900 µL of distilled water. After 20 minutes, the absorbance was read in a spectrophotometer at 560 nm (Kakkar and Viswanathan, 1984). Controls were prepared with propylene glycol and without NBT.

Emulsion preparation

To prepare the O/W emulsion (raw material content shown in Table 1) the oily and aqueous phases were heated separately to 75 °C, then the oily phase was stirred into the water phase and the system mixed (Helipath® at 130 r.p.m.) with constant agitation until it had cooled to 30 °C. At this point, 8% of the hydro-ethanolic extract of S. lutea was added to the emulsion.

<table>
<thead>
<tr>
<th>Component</th>
<th>Content (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceteareth-20</td>
<td>3.0</td>
</tr>
<tr>
<td>Cetearyl Alcohol</td>
<td>6.0</td>
</tr>
<tr>
<td>Dimethicone</td>
<td>1.0</td>
</tr>
<tr>
<td>Cetearyl Palmitate</td>
<td>3.0</td>
</tr>
<tr>
<td>Isopropyl Myristate</td>
<td>4.0</td>
</tr>
<tr>
<td>BHT</td>
<td>0.05</td>
</tr>
<tr>
<td>Propyl paraben</td>
<td>0.02</td>
</tr>
<tr>
<td>Methyl paraben</td>
<td>0.18</td>
</tr>
<tr>
<td>Propylene Glycol</td>
<td>3.0</td>
</tr>
<tr>
<td>PEG-75 Lanolin 50%</td>
<td>1.0</td>
</tr>
<tr>
<td>Distilled water</td>
<td>70.75</td>
</tr>
<tr>
<td>Hydro-ethanolic extract of S. lutea</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Assessment of the physicochemical stability of the topical formulation

For a preliminary estimation of stability, 10 g of the formulation with extract were centrifuged at 3000 rpm for 30 minutes. Samples (three for each condition) were exposed to
thermal stresses (45 °C and -5 °C), as stipulated in the ANVISA Stability Guide and Isaac et al. (2008). Their organoleptical properties (appearance and smell) and physicochemical characteristics (pH, viscosity, density and active substance contents) were tested on day 0, 1, 7, 15, 30, 60 and 90.

The pH was measured with Micronal BGH 874 digital pH-meter in an aqueous dispersion of 10% of the emulsion (Davis, 1977).

Viscosity was measured in a Viscostar L viscometer, with spindle L4. Samples were subjected to increases and decreases in rotation speed to identify the appropriate speed for analysis.

Density (d) was measured in a pyknometer (5 mL), the difference between the initial (empty and dry pyknometer) and final (pyknometer with cream) weights being the mass of cream that occupies 5 mL. Thus:

\[d = \frac{W_{\text{final}} - W_{\text{pyknometer}}}{5} \]

A spectrophotometer (Hitachi U-2001) was used to assay the flavonoid concentration (relative to the extract content) in the O/W emulsion. The analysis was performed at room temperature. Test conditions were: cream solution (5 mg/mL) in isopropanol/chloroform (1:1).

The absorbance at 247 nm was used to determine the concentration of extract in the sample, using the equation for an analytical curve of absorbance versus concentration of S. lutea extract.

In vitro release and permeation studies

In vitro release and permeation studies were performed in Franz cells of static flow with 3 types of membrane: cellulose and silicone (Sil-Tec 500-2, 000") membranes, obtained from Technical Products Inc. (Georgia, USA), used to test the ability of the cosmetic to release the extract, and a biological membrane (human skin), used to study the permeation of the extract through human epidermis. This biological tissue came from surgical intervention to reduce the abdomen of a Caucasian woman of 54 years, after ethical approval and informed consent. After excision, the tissue was kept in saline solution at 2-8 °C and then frozen at -20 °C until used. The stratum corneum and viable epidermis were obtained by a warming process (OECD, 2004) in which the tissue was immersed for 45 seconds in a solution of isotonic phosphate-buffered saline (PBS) at pH 7.4 and 60 ± 2 °C. After this procedure, the epidermis was removed.

In the release and permeation study, the area of the membrane in contact with the donor and receptor phases was approximately 1.0 cm². The receptor compartment had a capacity of approximately 5.0 mL. The receptor phase was a mixture of ethanol and propylene glycol (1:1). The system was maintained at 32 °C for about 30 minutes before starting the experiment. Samples of 200 µL were collected at predefined times. After sampling, the same volume was replaced with fresh receptor phase maintained at the same temperature. The tests were performed with 6 cells per formulation. The amount of cream applied to the membrane was about 200 mg (equivalent to 625.6 µg of quercetin and 225.6 µg of rutin). The amount of extract permeated was determined by UV absorption, as described above.

The release and skin permeability data were subjected to kinetic analysis, to establish the extract-release mechanism. The data were fitted to zero-order, first-order and Higuchi model equations.

Statistical analysis

The statistical and graph package Origin 7.0 was used to analyze the data and plot the graphs.

RESULTS AND DISCUSSION

Contents and flavonoids in the S. lutea extract

Quantities of phenolics and flavonoids in the samples were calculated from analytical curves for gallic acid, quercetin and rutin. The results are shown in Table 2. This flavonoids content expressed in rutin equivalents was similar to results obtained by Dong et al. (2009), who studied the flavonoids content of wild Lycium barbarum L. Meda et al. (2005) studied the phenolics and flavonoids contents in honey, expressing the results in gallic acid and quercetin equivalents respectively, as in this study. Among the twenty seven samples of honey used in that study, the one with the highest phenolics content had 114.75 ± 1.30 mg GAE/100 g, or approximately 13 times less than the content found in the Spondias lutea extract. Similarly, the best flavonoids content was 468 times less than in the Spondias lutea extract. Plants or natural compounds that contain flavonoids may be good sources of anti-radiation food products or anti-UV cosmetics (Dong et al., 2009). Another interesting result is that we found a larger number of quercetin equivalents of flavonoids than of gallic acid equivalents of total phenolics. This is a surprising result, since the flavonoids content should be less than the total phenolics content, given that the latter includes the former as flavonoids are a class of phenolic compounds. This anomaly should be caused by the calibration curves which are probably unsuitable to quantify either the phenolic compounds or the quercetin equivalents of flavonoids. To verify this hypothesis, it would be necessary to make detailed evaluations, using High Performance Liquid Chromatography (HPLC) to identify the phenolic compounds, including the flavonoids that are present in Spondias lutea.

<table>
<thead>
<tr>
<th>Phloroglucinol Compounds</th>
<th>Equivalent to</th>
<th>Amount (µg/100 g of extract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallic acid</td>
<td>1.55 ± 0.083</td>
<td></td>
</tr>
<tr>
<td>Quercetin</td>
<td>3.91 ± 0.017</td>
<td></td>
</tr>
<tr>
<td>Rutin</td>
<td>1.41 ± 0.004</td>
<td></td>
</tr>
</tbody>
</table>

Antioxidant activity in the Spondias lutea extract

DPPH assay

The extract showed a great capacity to scavenge the DPPH radical, as shown in Figure 1, exhibiting an IC₅₀ of 21.30 mg/mL. This property may indicate that the S. lutea extract affords protection against in vivo damage mediated by free radicals (Chen...
et al., 2005). The IC₅₀ value of the S. lutea extract is similar to results obtained for the honey samples, the best of which had and IC₅₀ of 29.13 ± 1.50 mg/mL (Meda et al., 2005).

Many secondary metabolites produced by plants can be used for different applications in nutrition, health and cosmetology (Curtis et al., 2009; González-Molina et al., 2010; Guimarães et al., 2010). Thus, the presence of these metabolites in the S. lutea extract indicates the cosmetic potential of this fruit. The topical application of antioxidant plant extracts (green and black tea, carotenoids, coffee and many flavonoids from fruits and vegetables) can protect skin from UV-induced erythema, early aging and irradiation-induced cancer (Reuter et al., 2010).

Physicochemical stability of the topical formulation

Analytical curve

The analytical curve constructed showed perfect correlation between concentration and absorbance, according to the Lambert-Beer Law. This curve is described by the equation:
\[y = 0.0673x + 0.0304 \] (r=0.9999).

Centrifugation test

The emulsion containing S. lutea extract maintained its homogeneity, with no phase separation, even after centrifugation at 3000 rpm for 30 minutes. This indicates stability of this product.

Accelerated stability

All tests were performed in triplicate. In Table 3 are the mean results measured. The pH data showed that this emulsion was stable and suitable for skin application (pH 3.79-3.94). The density did not vary significantly.

Viscosity was also stable over the study period. A slight increase in viscosity was observed in the samples subjected to low temperature (-5 °C). Macroscopic organoleptic characteristics were stable under the experimental conditions.

The flavonoid content decreased significantly during the test period in the samples stored at -5 °C (from 0.060 to 0.044 mg/mL) and at 45 °C (from 0.060 to 0.036 mg/mL). The results in Table 3 show the degradation profile of this active component incorporated into the cream and provide important data for the establishment of the shelf-life of this product (ANVISA).

The gradual fall in flavonoid concentration was less rapid in cream subjected to the low temperature. This shows the different performance of the product kept in different thermal conditions, confirming that the degradation is lower when the cream is stored at lower temperatures. This decrease in the active concentration could be counteracted by a high initial concentration of the active principle in the cream, thus ensuring that even with a marked reduction in this concentration during storage, the consumer will still have a sufficiently active concentration for product efficacy.

Table 3: Values of the properties tested during the accelerated stability test.

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>pH</th>
<th>Viscosity (mPa.s)</th>
<th>Flavonoid contents (mg/mL)</th>
<th>Density (g/mL)</th>
<th>Macroscopic organoleptic characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-5 °C</td>
<td>45 °C</td>
<td>-5 °C</td>
<td>45 °C</td>
<td>-5 °C</td>
</tr>
<tr>
<td>0</td>
<td>3.82</td>
<td>3.82</td>
<td>22880</td>
<td>22880</td>
<td>0.060</td>
</tr>
<tr>
<td>1</td>
<td>3.82</td>
<td>3.83</td>
<td>24680</td>
<td>22850</td>
<td>0.061</td>
</tr>
<tr>
<td>7</td>
<td>3.94</td>
<td>3.78</td>
<td>33270</td>
<td>21360</td>
<td>0.061</td>
</tr>
<tr>
<td>15</td>
<td>3.98</td>
<td>3.79</td>
<td>42820</td>
<td>19250</td>
<td>0.056</td>
</tr>
<tr>
<td>30</td>
<td>3.99</td>
<td>3.79</td>
<td>35220</td>
<td>20370</td>
<td>0.049</td>
</tr>
<tr>
<td>60</td>
<td>3.87</td>
<td>3.47</td>
<td>26866</td>
<td>28123</td>
<td>0.049</td>
</tr>
<tr>
<td>90</td>
<td>3.79</td>
<td>3.47</td>
<td>28770</td>
<td>22960</td>
<td>0.044</td>
</tr>
</tbody>
</table>
In vitro release and permeation studies

The results showed that the formulation used was able to release the extract, while the *S. lutea* extract permeated all membranes, though the permeation profiles differed among the different membranes used (Figures 3, 4 and 5).

![Fig. 3: Permeation of *S. lutea* extract through cellulose membranes (n=6).](image)

![Fig. 4: Permeation of *S. lutea* extract through silicone membranes (n=6).](image)

As expected the cellulose membrane allowed the highest rate of permeation by the flavonoids. In this membrane, the permeation tends to reach a steady state after 400 min. In silicone membranes, this state is not reached after 480 min.

The amount of *S. lutea* extract permeated through human epidermis was significantly lower than through the other membranes, showing the action of the stratum corneum, which is a hydrophobic layer interfering with the permeation of the relatively hydrophilic *S. lutea* extract. A method that can be used to increase the permeation rate of this extract through skin is to use another membrane, though the permeation profiles differed among the membranes used, in contrast to *S. lutea* extract permeated through silicone membranes (n=6).

![Fig. 5: Permeation of *S. lutea* extract through human epidermis (n=6).](image)

Table 4 shows the correlation coefficient found for each kinetic model fitted to each of the membranes, and Table 5 shows the equation obtained by fitting each of these models to the data. From these equations, it is possible to determine the release rate of the system, equal to the slope of the regression line.

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Zero-order</th>
<th>Higuchi model</th>
<th>First-order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose membrane</td>
<td>0.96896</td>
<td>0.97671</td>
<td>0.84479</td>
</tr>
<tr>
<td>Silicone membrane</td>
<td>0.99212</td>
<td>0.99118</td>
<td>0.87691</td>
</tr>
<tr>
<td>Human epidermis</td>
<td>0.76752</td>
<td>0.80292</td>
<td>0.63951</td>
</tr>
</tbody>
</table>

Table 5: Equations obtained by fitting zero-order, first-order and Higuchi models to the permeation data.

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Zero order</th>
<th>Higuchi model</th>
<th>First-order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose membrane</td>
<td>y = 0.000174 x + 0.0135</td>
<td>y = 0.00486 x - 0.0154</td>
<td>y = 0.00167 x - 1.73</td>
</tr>
<tr>
<td>Silicone membrane</td>
<td>y = 0.000141 x + 0.0075</td>
<td>y = 0.00392 x - 0.0156</td>
<td>y = 0.00184 x - 1.906</td>
</tr>
<tr>
<td>Human epidermis</td>
<td>y = 0.0000522 x + 0.0124</td>
<td>y = 0.000149 x + 0.00334</td>
<td>y = 0.00109 x - 1.90</td>
</tr>
</tbody>
</table>

* For y = ax + b, a indicates J in g/cm² per minute; x = time (min); y = weight permeated per area (g/cm²)

The amount of extract that permeated the membranes was a linear function of the square root of time, which indicates that the systems delivered extract according to the Higuchi model, controlled by diffusion. However, in the case of silicone membrane, showed the correlation coefficient was greatest for the linear relation between the amount of extract released and time, which describes the zero-order model.

In this study a finite dose was applied and no steady-state flux was observed.

The results obtained may be due to the lipophilic nature of the membranes used, in contrast to the continuous phase of the emulsion (aqueous phase) and to the polarity of the *Spondias lutea* extract (hydrophilic). This has been mentioned earlier (Dias et al., 2007a; Dias et al., 2007b).
CONCLUSION

The S. lutea extract contains phenolic compounds, including flavonoids. It possesses antioxidant activity, confirmed by the DPPH assay. The formulation developed as a carrier for this active principle was found to be stable. Thus, the results indicate that is possible to use the extract of Spundias lutea as an antioxidant for skin care products, such as an anti-aging O/W emulsified non-ionic system, which is able to permeate the skin in small concentrations. Such a cream could provide a satisfactory effect if applied to the skin frequently.

ACKNOWLEDGEMENTS

The authors are grateful to the Brazilian foundations CAPES, CNPq, FUNDUNESP and PADC-FCF-UNESP, for financial support and to Timothy J. C. Roberts, native English-speaking, by the review of the manuscript.

REFERENCES