Orally disintegrating tablets: formulation, preparation techniques and evaluation

Priyanka Nagar, Kusum Singh, Iti Chauhan, Madhu Verma, Mohd Yasir, Azad Khan, Rajat Sharma and Nandini Gupta

ABSTRACT

Oral delivery is currently the gold standard in the pharmaceutical industry where it is regarded as the safest, most convenient and most economical method of drug delivery having the highest patient compliance. Formulation of a convenient dosage form for oral administration, by considering swallowing difficulties especially in case of geriatric and pediatric patients leads to poor patient compliance. To troubleshoot such problems a new dosage form known as orally disintegrating tablet (ODT), has been developed which rapidly disintegrates and dissolve in saliva and then easily swallowed without need of water which is a major benefit over conventional dosage form. In addition, patients suffering from dysphasia, motion sickness, repeated emesis and mental disorders prefer such preparation because they cannot swallow large quantity of water. Further, drugs exhibiting satisfactory absorption from the oral mucosa or intended for immediate pharmacological action can be advantageously formulated in such type of dosage form. The popularity and usefulness of the formulation resulted in development of several ODT technologies for preparation. The current article is focused on ideal characteristics, advantages and disadvantages, formulation aspects, formulation technologies, evaluation of products and future potential. Various marketed preparations along with numerous scientific advancements made so far in this avenue have also been discussed.

Key words: API, Fast Dissolving tablet, Oral route, Excipients, Oral dissolving tablet.

INTRODUCTION

Oral administration is the most popular route due to ease of ingestion, pain avoidance, versatility (To accommodate various types of drug candidates) and most importantly, patient compliance (Sastry et al, 1997). Also, solid oral delivery systems do not require sterile conditions and are, therefore, less expensive to manufacture (Fasano et al, 2005). A vast variety of pharmaceutical research is directed at developing new dosage forms for oral administration. Most of these efforts have focused on either formulating novel drug delivery systems or increasing the patient compliance. Among the dosage forms developed for facilitating ease of medication, the orally disintegrating systems have been the favorite of product development scientists. In similar fashion the oral cavity is highly acceptable by patients, the mucosa is relatively permeable with rich blood supply and virtual lack of langerhans cells makes oral mucosa tolerant to potential allergens (Shojaei et al, 1998).

Overview of Oral Mucosa

The anatomical and physiological properties of the oral mucosa have been extensively reviewed by several authors (Shojaei et al, 1998 & Gandhi et al, 1994). The oral cavity comprises
the lips, cheek, tongue, hard palate, soft palate and floor of the mouth (Fig. 1). The lining of the oral cavity is referred to as the oral mucosa, and includes the buccal, sublingual, gingival, palatal and labial mucosa. The buccal, sublingual and the mucosal tissues at the ventral surface of the tongue account for about 60% of the oral mucosal surface area. The top quarter to one-third of the oral mucosa is made up of closely compacted epithelial cells (Fig. 2).

The primary function of the oral epithelium is to protect the underlining tissue against potential harmful agents in the oral environment and from fluid loss (Collins et al 1987). Beneath the epithelium are the basement membranes, lamina propria and submucosa. The oral mucosa also contains many sensory receptors including the taste receptors of the tongue. Three types of oral mucosa can be found in the oral cavity; the lining mucosa is found in the outer oral vestibule (the buccal mucosa) and the sublingual region (floor of the mouth) (Fig. 1). The specialized mucosa is found on the dorsal surface of tongue, while the masticatory mucosa is found on the hard palate (the upper surface of the mouth) and the gingival (gums) (Smart et al, 2004).

The lining mucosa comprises approximately 60%, the masticatory mucosa approximately 25%, and the specialized mucosa approximately 15% of the total surface area of the oral mucosal lining in an adult human. The masticatory mucosa is located in the regions particularly susceptible to the stress and strains resulting from masticatory activity. The superficial cells of the masticatory mucosa are keratinized, and a thick lamina propria tightly binds the mucosa to the underlying peristeum. Lining mucosa on the other hand is not nearly as subject to masticatory loads and consequently, has a non-keratinized epithelium, which sits on a thin and elastic lamina propria and a sub mucosa. The mucosa of the dorsum of the tongue is a specialized gustatory mucosa, which has well papillated surfaces which are both keratinized and some non-keratinized (Collins et al, 1987). Table 1 depicted the advantages and disadvantages associated with utilizing the oral mucosa as a drug delivery site.

Fig. 1: Schematic representation of the different linings of mucosa in mouth (Squier et al, 2001)

ORALLY DISINTEGRATING DOSAGE FORMS

The concept of orally disintegrating dosage forms has emerged from the desire to provide patients with more conventional means of taking their medication. Interestingly, the demand for ODDFs has enormously increased during the last decade, particularly for geriatric and pediatric patients who experience difficulty in swallowing conventional tablets and capsules. Hence, they do not comply with prescription, which results in high incidence of ineffective therapy (Seager et al, 1998).

In disease conditions such as motion sickness, sudden episodes of attacks of coughing and repeated emesis swallowing conventional solid dosage forms become difficult. Orally disintegrating dosage forms can serve as an effective alternative mode of drug delivery in such situations (Ghosh et al, 2005). When put in the mouth, these dosage forms disintegrate instantly to release the drug, which dissolves or disperses in the saliva (Dobetti et al, 2001). Thereafter, the drug may get absorbed from the pharynx and esophagus or from other sections of GIT as the saliva travels down. In such cases, bioavailability is significantly greater than that observed from conventional tablet dosage form (Brown et al 2001 & Deepak et al, 2004).

The novel technology of oral disintegrating dosage forms is known as fast dissolve, rapid dissolve, rapid melt and quick dispersible tablets (Gupta et al, 2010). However, the function and concept of all these dosage forms are similar. Different orally disintegrating dosage forms are as follows:

1. Orally disintegrating tablets: It is a tablet that dissolves or disintegrates in the oral cavity without the need of water or chewing (Gupta et al, 2010).
2. Fast dissolving films: The fear of taking solid tablets and the risk of choking for certain patient population still exists despite their short dissolution and disintegration time. It

![Image 314x543 to 545x651]

Table1: The advantages and disadvantages associated with utilizing the oral mucosa as a drug delivery site (Sankar et al, 2011).

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Accessible</td>
<td>1. Permeability barrier of the oral mucosa</td>
</tr>
<tr>
<td>2. Self administrable</td>
<td>2. Saliva washes away drug</td>
</tr>
<tr>
<td>3. Oral mucosa repairs rapidly</td>
<td>3. Mastication and speech may dislodge</td>
</tr>
<tr>
<td>4. Different areas of the oral cavity have different permeability characteristics</td>
<td>4. Delivery device</td>
</tr>
<tr>
<td>5. Highly hydrated environment to dissolve drug</td>
<td>5. Requires formulation for agreeable taste</td>
</tr>
<tr>
<td>7. Potential reduction of systemic side effects</td>
<td>7. Relatively small surface area</td>
</tr>
<tr>
<td>8. Avoid the hepatic first-pass effect</td>
<td>8. Risk of choking on or swallowing delivery device</td>
</tr>
<tr>
<td>9. High blood supply</td>
<td></td>
</tr>
<tr>
<td>10. Fast systemic delivery possible</td>
<td></td>
</tr>
</tbody>
</table>

![Image 52x141 to 289x281]
consists of very thin oral strip, which releases the active ingredient immediately after uptake into the oral cavity. It combines all advantages of tablets along with liquid dosage forms. This system is simply placed on patients tongue or any other mucosal surface, instantly wet by saliva; film rapidly hydrates and dissolves to release the medication (Vollmer et al, 2007).

3. Fast Caps: A new type of fast disintegrating drug delivery system based on gelatin capsules was developed. In contrast to conventional hard gelatin capsules, the fast caps consist of gelatin of low bloom strength and various additives to improve the mechanical and dissolution properties of capsule shell. It includes several advantages like high drug loading, possible solid and liquid filling, and no compression of coated taste masked or extended release drug particles / pellets, good mechanical properties, simple manufacturing, mechanical stability and requirement of special packaging. (Bodmeier et al, 1999).

4. Medicated chewing gums: it is an attractive alternative for drug delivery system with several advantages including convenience for administration, mainly chewing gum is used to promising controlled release drug delivery system. These are mainly available currently for pain relief, smoking cessation, travel illness and freshening of breath.(Pandit et al, 2006).

5. Freeze-dried wafer: it is a quick-disintegrating, thin matrix that contains a medicinal agent that does not need water for swallowing. This fragile dosage form requires unit-dose packaging to ensure physical stability. The wafer disintegrates instantaneously in the oral cavity and releases drug, which dissolves or disperses in the saliva. The saliva is swallowed and the drug is absorbed across the gastrointestinal tract (GIT). (Dobetti et al, 2001).

ORALLY DISINTEGRATING TABLETS

The performance of ODTs depends on the technology used in their manufacture. The orally disintegrating property of these tablets is attributable to the quick ingress of water into the tablet matrix, which creates porous structure and results in rapid disintegration. Hence, the basic approaches to develop ODTs include maximizing the porous structure of the tablet matrix, incorporating the appropriate disintegrating agent and using highly water-soluble excipients in the formulation (Wilson et al, 1987).

Ideal characteristics of ODTs

ODTs should depict some ideal characteristics to distinguish them from traditional conventional dosage forms. Important desirable characteristics of these dosage forms include (Kuchekar et al, 2003)

1. No water requirement for swallowing purpose but it should dissolve or disintegrate in the mouth usually within fraction of seconds.
2. Provide pleasant feeling in the mouth.
3. Be compatible with taste masking.
4. Be portable without fragility concern.
5. Leave negligible or no residue in the mouth after oral administration.
6. Exhibit low sensitivity to altered environmental conditions such as humidity and temperature.
7. Allow high drug loading.
8. Adaptable and amenable to conventional processing and packaging equipment at nominal expense.

Advantages of ODTs

1. ODT can be administer to the patients who cannot swallow tablets/cap., such as the elderly, stroke victims, bedridden patients, patients with esophageal problems & patients who refuse to swallow such as pediatric, geriatric & psychiatric patients and thus improves patient compliance (Wilson et al, 1987).
2. It contain the certain studies which concluded increased bioavailability and proved rapid absorption of drugs through pregastric absorption of drugs from mouth, pharynx & esophagus as saliva passes down (Fix et al, 1998).
3. ODT is most convenient for disabled, bedridden patients, travelers and busy people, who do not always have access to water (Fix et al, 1998).
4. Good mouth feel property of ODT helps to change the perception of medication (Allen et al, 1997).
5. As bitter pill particularly in pediatric patients (Wilson et al, 1987).
6. The risk of choking or suffocation during oral administration of conventional formulations due to physical obstruction is avoided, thus providing improved safety (Indurwade et al, 2000).
8. Suitable during traveling where water may not be available (Fix et al, 1998).
9. No specific packaging required can be packaged in push through blisters (Kuchekar et al, 2003).
15. Provides rapid drug delivery from dosage forms (Allen et al, 1997).
19. Adaptable and amenable to existing processing and packaging machinery (Wilson et al, 1987)
20. Rapid onset of action (Bradoo et al, 2001)

Disadvantages of ODTs

1. ODT is hygroscopic in nature so must be kept in dry place (Devrajan et al, 2003)
2. Some time it possesses mouth feeling (Chang et al, 2000).
3. It is also shows the fragile, effervesce granules property (Chang et al, 2000)
4. ODT requires special packaging for properly stabilization & safety of stable product (Devrajan et al, 2003)

MECHANISMS OF ODTs

ODTs involve the following mechanisms to achieve the desired fast dissolving characteristics (Sahoo et al, 2010):

1. Water must quickly enter into the tablet matrix to cause rapid disintegration and instantaneous dissolution of the tablet.
2. Incorporation of an appropriate disintegrating agent or highly water soluble excipients in the tablet formulation.
3. There are some under mentioned mechanisms by which the tablet is broken down into the smaller particles and then subsequently result a solution or suspension of the drug. The mechanisms are:
 - High swellability of disintegration
 - Chemical reaction
 - Capillary action

FORMULATION ASPECTS OF ODTs

Important ingredients that are used in the formulation of ODTs should allow quick release of the drug, resulting in faster dissolution. This includes both the pharmacologically active ingredients (drug) and the excipients (additives).

A. Selection of drug candidate: Several factors may be considered while selecting an appropriate drug candidate for development of orally disintegrating tablets. The ultimate characteristics of a drug for dissolution in mouth and pregastric absorption from fast dissolving tablets include (Reddy et al, 2002)

1. Free from bitter taste
2. Dose lower than 20mg
3. Small to moderate molecular weight
4. Good solubility in water and saliva
5. Partially unionized at oral cavity pH
6. Ability to diffuse and partition in to the epithelium of upper GIT (log >1, or preferably >2)
7. Ability to permeate oral mucosal tissue.

There are no particular limitations as long as it is a substance which is used as a pharmaceutical active ingredient. Researchers have formulated ODT for various categories of drugs used for therapy in which rapid peak plasma concentration is required to achieve the desired pharmacological response. These include neuroleptics, cardiovascular agents, analgesics, antiallergic, anti-epileptics, anxiolytics, sedatives, hypnotics, diuretics, anti-parkinsonism agents, anti-bacterial agents and drugs used for erectile dysfunction (Kushekar et al, 2003)

In contrast, the following characteristics may render unsuitable for delivery as an orally disintegrating tablet:

1. Short half life and frequent dosing.
2. Very bitter or otherwise unacceptable taste because taste masking cannot be successfully achieved.
3. Require controlled or sustained release.
4. Combination with anticholinergics.

B. Selection of excipients: Mainly seen excipients in ODT are as follows at least one disintegrant, a diluent, a lubricant, and optionally, a swelling agent, sweeteners, and flavoring agents etc. Ideal bulk excipients for orally disintegrating dosage forms should have the following properties (Bansal et al, 2003):

1. Disperses and dissolves in the mouth within a few seconds without leaving any residue.
2. Masks the drug’s offensive taste and offers a pleasant mouth feel.
3. Enables sufficient drug loading and remains relatively unaffected by changes in humidity or temperature.

The role of excipients is important in the formulation of fast-melting tablets. The temperature of the excipients should be preferably around 30–35°C for faster melting properties. Detail of excipients is given in table 2 & 3.

<table>
<thead>
<tr>
<th>Excipients</th>
<th>Function</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superdisintegrant</td>
<td>Increases the rate of dissolution and hence the dissolution. The presence of other formulation ingredients such as water-soluble excipients and effervescent agents further hastens the process of disintegration. For the success of fast dissolving tablet, the tablet having quick dissolving property which is achieved by using the super disintegrant</td>
<td>Croscbondone, Microcrystalline cellulose, sodium starch glycolate, sodium carboxy methyl cellulose, pregelatinized starch, Carbomyl methyl cellulose, and modified corn starch. Sodium starch glycolate has good flowability with crosscarmellose sodium. Cross povidone is fibrous nature and highly compactable</td>
</tr>
<tr>
<td>Flavors</td>
<td>Increases Patient compliance and acceptability</td>
<td>Peppermint flavor, cooling flavor, flavor oils and flavoring aromatic oil, peppermint oil, clove oil, bay oil, anise oil, eucalyptus oil thyme oil, oil of bitter almonds. Flavoring agents include, vanilla, citrus oils, fruit essences. Artificial sweeteners like Aspartame, Sugars derivatives. Bulking agents like dextrose, fructose, isomalt, lactitol, maltitol, maltose, mannitol, sorbitol, starch hydrolysate, polydextrose and xylitol</td>
</tr>
<tr>
<td>Sweeteners and sugar based excipients</td>
<td>This is another approach to manufacture ODT by direct compression. Sugar based excipients acts as bulking agents. These exhibits high aqueous solubility and sweetness, and hence impart taste masking property and a pleasing mouth feel.</td>
<td>Sodiumdecoysulfate, sodiumlaurylsulfate, polyoxysyhtene sorbitan fatty acid esters (Tweens).</td>
</tr>
<tr>
<td>Surface Active agents</td>
<td>Reduces interfacial tension and thus enhances solubilization of FDT</td>
<td></td>
</tr>
</tbody>
</table>
The techniques used to manufacture ODTs can be classified as:

1) Conventional techniques
2) Patented techniques

Conventional Techniques

The various conventional technologies are developed for the preparation of Orally Disintegrating drug delivery system that are Freeze drying, Spray drying, Molding, Phase transition process, Melt granulation, Sublimation, Mass Extrusion, Cotton Candy Process, Direct compression (Meyers et al, 1995 & Makino et al, 1993). Detail of all these conventional techniques is given in table 4.

Patented Techniques

Rapid-dissolving characteristic of ODTs is generally attributed to fast penetration of water into tablet matrix resulting in its fast disintegration. Several technologies have been developed on the basis of formulation aspects and different processes and resulting dosage forms vary on several parameters like mechanical strength, porosity, dose, stability, taste, mouth feel, dissolution rate and overall bioavailability. Table 5 represents the list of unique patented technologies, their advantages, disadvantages, and Table 6 represents the patented technology and their branded products.

EVALUATION OF ODTs

Evaluation parameters of tablets mentioned in the Pharmacopeias need to be assessed, along with some special tests. The quality of tablet, once formulated by rule, is generally dictated by the quality of physicochemical properties of blends (Reddy et al, 2002). There are many formulation and process variables involved in mixing and all these can affect the characteristics of blends produced (Kushkar et al, 2003).

A. Evaluation of blends before compression: The various characteristics of blends to be tested before compression are (Kushkar et al, 2003 & Shyamala et al, 2002):

1. **Angle of repose:** Angle of repose is determined by using funnel method. The accurately weighed blend is taken in a funnel. The height of the funnel is adjusted in such a way that the tip of the funnel just touches the apex of the heap of blend. The drug (as solid dispersion)-excipient blend is allowed to flow through the funnel freely on to the surface. The diameter of the powder cone is measured and angle of repose is calculated using the following equation.

 \[
 \tan \Theta = \frac{h}{r}
 \]

 Where \(h \) and \(r \) are the height of cone and radius cone base respectively. Angle of Repose less than 30° shows the free flowing of the material.

2. **Bulk density:** Apparent bulk density is determined by pouring a weighed quantity of blend into graduated cylinder and measuring the volume and weight. Bulk density can be calculated by using following formula:

 \[
 \text{Bulk density} = \frac{\text{Weight of the powder}}{\text{Volume of the packing}}
 \]

3. **Tapped density:** It is determined by placing a graduated cylinder, containing a known mass of drug-excipients blend. The cylinder is allowed to fall under its own weight onto a hard surface from the height of 10 cm at 2 second intervals. The tapping is continued until no further change in volume is noted. Tapped density can be calculated by using following formula:

 \[
 \text{Tapped Density} = \frac{(\text{Weight of the powder} \times \text{volume of the tapped packing})}{\text{Volume of the packing}}
 \]
Table 4: Conventional techniques used for the preparation of ODTs.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Techniques</th>
<th>Method and characteristics of prepared ODTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disintegrant addition</td>
<td>Involves the addition of superdisintegrants in optimum concentration to the formulation to achieve rapid disintegration/dissolution. For e.g. MCC and sodium starch glycolate are used in formulation of Elavirenz, Crystalline cellulose (AvicelPH-102) and low substituted HPEC used in oxybutinin and prnepazepine formulation. Crospovidone used in galantamine HBr; Crospovidone (3%/w/w) and croscarmellose Na (5%/w/w) used in prochlorperazine maleate formulation. Characteristics: similar to conventional tablets with higher % of disintegrants, lower hardness and higher % of friability. The drug is dissolved or dispersed in an aqueous solution of a carrier. The mixture is poured into the wells of the preformed blister packs. The trays holding the blister packs are passed through liquid nitrogen freezing tunnel to freeze the drug solution. Then the frozen blister packs are placed in refrigerated cabinets to continue the freeze drying. Finally the blisters are packaged and shipped.</td>
</tr>
<tr>
<td>2</td>
<td>Freeze Drying or Lyophilization</td>
<td>The dried product can be used to coat granules of bitter tasting drugs and thereby masking their bitter taste. The preparation was involved in direct compression. Characteristics: Prepared tablet disintegrates within 20 seconds when immersed in an aqueous medium.</td>
</tr>
<tr>
<td>3</td>
<td>Moulding</td>
<td>Water-soluble ingredients with a hydro alcoholic solvent is used and is molded into tablets under pressure lower than that used in conventional tablet compression. Characteristics: Molded tablets are very less compact than compressed tablet porous structure that enhances disintegration/dissolution and finally absorption increased. Advantages: Very rapid dissolution (5–15 s). Disadvantages: High cost of production, Weak mechanical strength Possible limitations in stability.</td>
</tr>
<tr>
<td>4</td>
<td>Sublimation</td>
<td>Inert solid ingredients that volatilize rapidly like urea, camphor ammonium carbonate, ammonium bicarbonate, and hexamethylenetetramine were added to the other tablet ingredients and the mixture is compressed into tablets. The volatile materials were then removed via sublimation, which generates porous structure. Characteristics: Porous structure that enhances dissolution by using volatile material or solvent e.g. cyclohexane, benzene etc. Advantages: Good physical resistance & highly porous structure. Disadvantages: Relatively expensive and time consuming process. The product obtained is poorly stable and fragile, sensitive to humidity rendering conventional packaging unsuitable. Very poor physical resistance, High cost of production. Low dose of water-soluble drugs.</td>
</tr>
<tr>
<td>5</td>
<td>Spray-Drying</td>
<td>By hydrolyzed and non hydrolyzed gelatins as supporting agents, mannitol as bulking agent, sodium starch glycolate or croscarmellose sodium as disintegrating agent and an acidic material (e.g. citric acid) and/or alkali material (e.g. Sodium bicarbonate) to enhance disintegration/dissolution. (Mishra D N et al) Characteristics: Prepared tablet disintegrates rapidly within 15 seconds.</td>
</tr>
<tr>
<td>6</td>
<td>Mass Extrusion</td>
<td>Involves softening the active blend using the solvent mixture of water soluble polyethylene glycol, methanol and expulsion of softened mass through the extruder or syringe to get a cylindrical shape of the product into even segments using heated blade to form tablets. Characteristics: The dried product can be used to coat granules of bitter tasting drugs and thereby masking their bitter taste.</td>
</tr>
<tr>
<td>7</td>
<td>Direct compression</td>
<td>Conventional equipment, commonly available excipients and a limited number of processing steps are involved in direct compression. Characteristics: It is most cost effective tablet manufacturing technique. Advantages: Requires fewer unit operations compared with wet Granulation (shorter processing time and lower energy consumption) Fewer stability issues for actives that are sensitive to heat or moisture For certain compounds, faster dissolution rates may be generated from tablets prepared by direct compression compared with wet granulation; for example, Norfloxacin. Fewer excipients may be needed in a direct compression Formula. Disadvantages: Issues with segregation – these can be reduced by matching The particle size and density of the active drug substance with excipients In general, the drug content is limited to approximately 30% or approximately 50 mg Not suited for poorly flowing drug compounds Static charges may develop on the drug particles or excipients during mixing, which may lead to agglomeration of particles producing poor mixing.</td>
</tr>
<tr>
<td>8</td>
<td>Cotton candy process</td>
<td>Involves the formation of matrix of polysaccharides by simultaneous action of flash melting and spinning. This candy floss matrix is then milled and blended with active ingredients and excipients after re-crystallization and subsequently compressed to FDT. Characteristics: It can accommodate high doses of drug and offers improved mechanical strength.</td>
</tr>
<tr>
<td>9</td>
<td>Compaction a) Melt granulation</td>
<td>Prepared by incorporating a hydrophilic waxy binder (super polyact) PEG-6-Stearate. Super polyact not only acts as binder and increase physical resistance of tablet but also helps the disintegration of tablet. Characteristics: It melts in the mouth and solubilizes rapidly leaving no residue. Prepared by compressing a powder containing two sugar alcohols with high and low melting points and subsequent heating at a temperature between their melting points. The tablet hardness was increased after heating process due to increase of inter particle bond induced by phase transition of lower melting point sugar alcohol. Characteristics: The compatibility increased and so sufficient hardness gained by the formulation.</td>
</tr>
</tbody>
</table>
10 Nanonization
Involves size reduction of drug to nanosize by milling the drug using a proprietary wet-milling technique. The nanocrystals of the drug are stabilized against agglomeration by surface adsorption on selected stabilizers, which are then incorporated into ODTs.
Characteristics: It is used for poorly water soluble drugs. It leads to higher bioavailability and reduction in dose, cost effective manufacturing process, conventional packaging due to exceptional durability and wide range of doses (up to 200 mg of drug per unit).

11 Fast Dissolving Films
Involves size reduction of drug to nanosize by milling the drug using a proprietary wet-milling technique. The nanocrystals of the drug are stabilized against agglomeration by surface adsorption on selected stabilizers, which are then incorporated into ODTs.
Characteristics: It is used for poorly water soluble drugs. It leads to higher bioavailability and reduction in dose, cost effective manufacturing process, conventional packaging due to exceptional durability and wide range of doses (up to 200 mg of drug per unit).

12 Tableting (standard)
Advantages:
- Low cost of production
- Use of standard equipment/materials
- High dose
- Good physical resistance

Disadvantages:
- Significant effects of the size and hardness of the tablets on disintegration property

Tableting (effervescent)
Advantages:
- Use of standard equipment
- High dose Good physical resistance
- Pleasant effervescent mouth feel

Disadvantages:
- Operating in controlled low humidity
- Need of totally impermeable blister

Tableting (Humidity Treatment)
Advantages:
- Good physical resistance.
- Pleasant mouth feel

Disadvantages:
- Extra equipments for humidification and drying
- Possible limitations in stability
- High cost of production
- Not suitable for moisture sensitive compounds
- Fragile before humidity treatment

Compressibility index: The Compressibility Index of the blends is determined by compressibility index. Compressibility Index can be calculated by using following formula:

\[
\text{Compressibility Index (\%)} = \left[\frac{(TD - BD) \times 100}{TD} \right]
\]

Hausner’s ratio: A similar index to indicate the flow properties can be defined by Hausner’s ratio. Hausner’s ratio can be calculated by using following formula:

\[
\text{Hausner’s ratio} = \frac{(\text{Tapped density x 100})}{(\text{Poured density})}
\]

Hausner’s ratio <1.25 – Good flow = 20% compressibility index
1.25 – Poor flow =33% compressibility index

Void Volume: The volume of the spaces is known as the void volume “V” (Yoshio et al) and is given by the formula

\[
V = V_b - V_p
\]

Where, \(V_b\) = Bulk volume (volume before tapping)
\(V_p\) = True volume (volume after tapping)

Porosity: The porosity \(\varepsilon\) of powder is defined as the ratio of void volume to the bulk volume of the packaging. The porosity of the powder is given by following formula:

\[
\varepsilon = \frac{V_b - V_p}{V_p} = 1 - \frac{V_p}{V_b}
\]

Table 5: Different Patented techniques for preparation of ODTs (Takagi et al, 2005 & Modi et al, 2006)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Technique</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zydis</td>
<td>Quick dissolution, Self-preserving and increased bioavailability.</td>
<td>Expensive process, poor stability at higher Temperature and humidity.</td>
</tr>
<tr>
<td>2</td>
<td>Orasolv</td>
<td>Taste-masking is twofold, quick Dissolution.</td>
<td>Low mechanical strength</td>
</tr>
<tr>
<td>3</td>
<td>Durasolv</td>
<td>Higher mechanical strength than Orasolv, Good rigidity.</td>
<td>Inappropriate with larger dose.</td>
</tr>
<tr>
<td>4</td>
<td>Flashtab</td>
<td>Only conventional tableting technology</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>Wow tab</td>
<td>Adequate dissolution rate and hardness.</td>
<td>No significant change in bioavailability</td>
</tr>
<tr>
<td>6</td>
<td>Oraquick</td>
<td>Faster and efficient production, appropriate for heat-sensitive drugs</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>Ziplet</td>
<td>Good mechanical strength, satisfactory properties can be obtained at high dose (450 mg) and high weight (850 mg).</td>
<td>As soluble component dissolves, rate of water diffusion in to tablet is decreased because of formation of viscous concentrated solution.</td>
</tr>
<tr>
<td>8</td>
<td>FlashDose</td>
<td>High surface area for dissolution</td>
<td>High temperature required to melt the matrix can limit the use of heat-sensitive drugs, sensitive to moisture and humidity.</td>
</tr>
</tbody>
</table>
Porosity is frequently expressed in percentage and is given as:

\[
\% e = (1 - \frac{V_p}{V_b}) \times 100
\]

The porosity of powder indicates the types of packaging a powder undergoes when subject to vibrations, when stored, or in tablet machine when passed through hopper or feed frame.

B. Evaluation of Tablets: All the formulated ODTs were subjected to the following quality control tests (Shyamala et al., 2002, Bradoo et al., 2001, & Makino et al., 1993):

Weight variation: The weight variation test is carried out in order to ensure uniformity in the weight of tablets in a batch. First the total weight of 20 tablets from each formulation is determined and the average is calculated. The individual weight of the each tablet is also determined to find out the weight variation. **Table 9** depicted USP Specification for uniformity of weight.

Table 6: Patented technology and their branded products (Modi et al., 2006).

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Technology</th>
<th>Process involved</th>
<th>Patent owner</th>
<th>Drugs Used (Brand name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zydus</td>
<td>Lyophilization</td>
<td>R.P.Scherer Inc.</td>
<td>Loratadine (Claritin RediTab and Dimetapp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quick Dissolve)</td>
</tr>
<tr>
<td>2</td>
<td>Quicksolv</td>
<td>Lyophilization</td>
<td>Jansen Pharmaceutical</td>
<td>Cisapride monohydrate (Propulsid Quicksolv)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Risperidone (Risperdal M-tab)</td>
</tr>
<tr>
<td>3</td>
<td>FlashTab</td>
<td>Lyophilization</td>
<td>Ethypharm</td>
<td>Ibuprofen (Nurofen FlashTab)</td>
</tr>
<tr>
<td>4</td>
<td>Lyoc</td>
<td>Multiparticulates</td>
<td>Farmlyoc</td>
<td>Phloroglucinol Hydrate (Spafon Lyoc)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compressed tablets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Orasolv</td>
<td>Compressed Tablets</td>
<td>Cima Labs Inc.</td>
<td>Paracetamol (Tempra Quicklets),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zolmitriptan (Zolmig ZM)</td>
</tr>
<tr>
<td>6</td>
<td>Durasolv</td>
<td>Molding</td>
<td>Cima Labs Inc.</td>
<td>Hyoscymine Sulfate (NuLev)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zolmitriptan (Zolmig ZMT)</td>
</tr>
<tr>
<td>7</td>
<td>RapiTab</td>
<td>Compressed Tablets</td>
<td>Schwarz Pharma</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>Wow tab</td>
<td>Compressed Molding Tablets</td>
<td>Yamanouchi Pharma Technologies, Inc.</td>
<td>Famlotidine (Gaster D)</td>
</tr>
<tr>
<td>9</td>
<td>Fast melt</td>
<td>Molding</td>
<td>Elan Corp.</td>
<td>--</td>
</tr>
<tr>
<td>10</td>
<td>Ziplets</td>
<td>Molding</td>
<td>Eurand</td>
<td>Ibuprofen (Cibalgin Duo Fast)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tramadol HCl (Relivia Flash dose)</td>
</tr>
<tr>
<td>11</td>
<td>FlashDose</td>
<td>Cotton-candy process</td>
<td>Fuisz Technology Ltd.</td>
<td>Hyoscymine Sulfate ODT</td>
</tr>
<tr>
<td>12</td>
<td>Oraquick</td>
<td>Micromask taste</td>
<td>KV Pharm. Co., Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Masking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Advatab</td>
<td>Micropaps and diffuscap CR Technology</td>
<td>Eurand International</td>
<td>AdvaTab cetirizine, AdvaTab Paracetamol</td>
</tr>
</tbody>
</table>

Hardness: The hardness of tablet is an indication of its strength. Measuring the force required to break the tablet across tests it. The force is measured in kg and the hardness of about 3-5 kg/cm2 is considered to be satisfactory for uncoated tablets. Hardness of 10 tablets from each formulation is determined by Monsanto hardness tester, Pfizer hardness tester etc.

Friability test: Friability is the loss of weight of tablet in the container due to removal of fine particles from the surface. Friability test is carried out to access the ability of the tablet to withstand abrasion in packaging, handling and transport. Roche friabilirator is employed for finding the friability of the tablets. Weigh the 20 tablets from each batch and place in Roche friabilirator that will rotate at 25 rpm for 4 minutes. Dedust the all tablets and weigh again. The percentage of friability can be calculated using the formula

\[
\% \text{ Friability} = \frac{|W_1-W_2|}{W_1} \times 100
\]

Where, \(W_1=\) Weight of tablet before test, \(W_2=\) Weight of tablet after test

Disintegration test: The USP disintegration apparatus contains six glass tubes that are “3 long, open at the top, and held against 10” screen at the bottom end of the basket rack assembly. One tablet is placed in each tube and the basket rack is poisoned in 1 liter beaker of distilled water at 37±2 °C, such that the tablets remain below the surface of the liquid on their upward movement and descend not closer than 2.5cm from the bottom of the beaker.

Mechanical strength: Tablets should possess adequate mechanical strength to bear shocks of handling in manufacturing, packaging and shipping. Crushing strength and friability are two important

Table 7: Angle of repose as an indication of powder flow properties.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Angle of Repose (°)</th>
<th>Type of Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 20</td>
<td>Excellent</td>
</tr>
<tr>
<td>2</td>
<td>20 – 30</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>30 – 34</td>
<td>Passable</td>
</tr>
<tr>
<td>4</td>
<td>> 34</td>
<td>Very Poor</td>
</tr>
</tbody>
</table>

Table 8: Relationship between % compressibility index and flow ability.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>% compressibility index</th>
<th>Type of Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5-12</td>
<td>Excellent</td>
</tr>
<tr>
<td>2</td>
<td>12-16</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>18-21</td>
<td>Fair to Passable</td>
</tr>
<tr>
<td>4</td>
<td>23-35</td>
<td>Poor</td>
</tr>
<tr>
<td>5</td>
<td>33-38</td>
<td>Very Poor</td>
</tr>
<tr>
<td>6</td>
<td>< 40</td>
<td>Very Very Poor</td>
</tr>
</tbody>
</table>

Table 9: USP Specification for uniformity of weight.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Average weight of Tablets(mg)</th>
<th>Maximum % difference allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130 or less</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>130-324</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>More than 324</td>
<td>5</td>
</tr>
</tbody>
</table>
parameters for the determination of mechanical strength. Crushing Strength or Tablet Tensile strength is the force required to break a tablet by compression in the radial direction, it is important to note that excessive crushing strength significantly reduces the disintegration time. The crushing strength of the tablet is measured by using Pfizer hardness testers. Tensile strength for crushing (T) is calculated using equation

\[T = \frac{2F}{\pi \times d \times t} \]

Where F is the crushing load, and d and t denote the diameter and thickness of the tablet respectively.

Uniformity of dispersion: Keep the Two tablets in 100ml water and stir gently for 2 minutes. The dispersion is passed through 22 meshes. The tablets will consider passing the test if no residue remained on the screen.

Wetting time: The wetting time of the tablets is measure by using a simple procedure. Place the five circular tissue papers of 10 cm diameter in a petridish containing 0.2% w/v solution (3ml). A tablet is carefully placed on the surface of the tissue paper. The time require for develop blue color on the upper surface of the tablet is noted as the wetting time.

Water absorption ratio: A small piece of tissue paper folded twice is placed in a small petridish containing 6 ml of water. Put a tablet on the paper and the time required for complete wetting is measured. The wetted tablet is then reweighed. Water absorption ratio, R is determine by using following formula

\[R = \frac{100 \times W_a - W_b}{W_b} \]

Where, Wb is the weight of tablet before water absorption
Wa is the weight of tablet after water absorption

Taste/ Mouth sensation: Mouth-feel is critical, and patients should receive a product that feels pleasant. One tablet from each batch is randomly selected and in vitro dispersion time is carried out. (Shirai et al, 1993)

In-Vivo disintegration test: The test is carried out on 2 or 3 tablets in the mouth and the time in second taken for complete disintegration of the tablet is measured.

In-Vitro dissolution test: In-vitro dissolution study is performed by using USP Type II Apparatus (Paddle type) at 50 rpm. Phosphate buffer pH 6.8, 900 ml is used as dissolution medium which maintained at 37±0.5°C. Withdraw aliquot of dissolution medium (10 ml) at specific time intervals (2 min) and filter. The amount of drug dissolved is determined by suitable analytical technique. (Cirri et al, 2005)

Stability Studies: The optimized formulation of ODTs is subjected to stability study as per ICH guidelines to assess their stability with respect to their physical appearance and release characteristics.

FUTURE POTENTIAL

These dosage forms may be suitable for the oral delivery of drugs such as protein and peptide-based therapeutics that have limited bioavailability when administered by conventional tablets. These products usually degrade rapidly in the stomach. Should next generation drugs are predominantly protein or peptide based, tablets may no longer be the dominant format for dosing such moieties. Injections generally are not favored for use by patients unless facilitated by sophisticated auto-injectors. Inhalation is one good alternative system to deliver these drugs, but the increased research into biopharmaceuticals so far has generated predominantly chemical entities with low molecular weights. The developments of enhanced oral protein delivery technology by ODTs which may release these drugs in the oral cavity are very promising for the delivery of high molecular weight protein and peptide.

Table 10: Marked Preparations of ODTs

<table>
<thead>
<tr>
<th>S.No</th>
<th>Name of the Product</th>
<th>API</th>
<th>Name of company</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Imodium Lingual</td>
<td>Imodium</td>
<td>Janssen</td>
</tr>
<tr>
<td>2</td>
<td>Pepcidin Raptab</td>
<td>Pepsid</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Mosid – MT</td>
<td>Mosapride citrate</td>
<td>Torrent</td>
</tr>
<tr>
<td>4</td>
<td>Caltrit Reditabs</td>
<td>Micromized Loratadine</td>
<td>Schering Plough Corp., USA</td>
</tr>
<tr>
<td>5</td>
<td>Nimulid – MD</td>
<td>Nimesulide</td>
<td>Panacea</td>
</tr>
<tr>
<td>6</td>
<td>Zyrof Meltab</td>
<td>Rofecoxib</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Feldene Melt</td>
<td>Piroxicam</td>
<td>Pfizer</td>
</tr>
<tr>
<td>8</td>
<td>Maxalt-MLT</td>
<td>Rizatriptan Benzoate</td>
<td>Merck</td>
</tr>
<tr>
<td>9</td>
<td>Pepcid ODT</td>
<td>Famotidine</td>
<td>Famotidine Merck</td>
</tr>
<tr>
<td>10</td>
<td>Zyprex Zydil</td>
<td>Olanzapine</td>
<td>Eli Lilly</td>
</tr>
<tr>
<td>11</td>
<td>Zofran ODT</td>
<td>Ondansetron</td>
<td>GSK</td>
</tr>
<tr>
<td>12</td>
<td>Remeron Soltab</td>
<td>Mirtazapine</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Imodium Instant melts</td>
<td>Loperamide HCl</td>
<td>Janssen</td>
</tr>
<tr>
<td>14</td>
<td>Romilast</td>
<td>Montelukast</td>
<td>Ranbaxy</td>
</tr>
<tr>
<td>15</td>
<td>Olanex instab</td>
<td>Olanzapine</td>
<td>Ranbaxy</td>
</tr>
<tr>
<td>16</td>
<td>Zomig ZMT and Rapimelt</td>
<td>Zolmitriptan</td>
<td>Astra Zeneca</td>
</tr>
<tr>
<td>17</td>
<td>Zotacet MD</td>
<td>Cetirizine HCl</td>
<td>Zota Pharma</td>
</tr>
</tbody>
</table>

These dosage forms may be suitable for the oral delivery of drugs such as protein and peptide-based therapeutics that have limited bioavailability when administered by conventional tablets. These products usually degrade rapidly in the stomach. Should next generation drugs be predominantly protein or peptide based, tablets may no longer be the dominant format for dosing such moieties. Injections generally are not favored for use by patients unless facilitated by sophisticated auto-injectors. Inhalation is one good alternative system to deliver these drugs, but the increased research into biopharmaceuticals so far has generated predominantly chemical entities with low molecular weights. The developments of enhanced oral protein delivery technology by ODTs which may release these drugs in the oral cavity are very promising for the delivery of high molecular weight protein and peptide.
CONCLUSION

The ODTs have potential advantages over conventional oral dosage forms as they improved patient compliance; convenience, rapid onset of action and bioavailability which drawn the attention of many manufactures. The pediatric and geriatric problems are easily targets by ODTs, as both the groups found it difficult to swallow conventional tablets. ODTs are to maximize the porous structure of the tablet matrix and incorporate super disintegrating agents in optimum concentration so as to achieve rapid disintegration and instantaneous dissolution of the tablet along with good taste masking properties and excellent mechanical strength. Many drugs can be incorporated in ODT especially unpalatable drugs. The research is still going on. More products need to be commercialized to use this technology properly. Thus ODT may be developed for most of the available drugs in near future.

REFERENCES

Ghosh TK., Pfister WR., Quick dissolving oral dosage forms: Scientific and regulatory considerations from a clinical pharmacology and biopharmaceuticals perspective; In: Drug delivery to the oral cavity: Molecules to market. New York, CRC Press (2005), 337-356.
Kushekar BS., Mouth dissolving tablets: A Novel Drug Delivery system. Pharma times 2003; 35.
Pandit AP., Joshi SB., Formulation development of chewing gum as novel drug delivery system for dilatiazem hydrochloride, Indian drug. 2006, 43(9):725-727.