In-vitro adhesion of Staphylococcus spp. to certain orthopedic biomaterials and expression of adhesion genes

Gamal Fadl Mahmoud Gad, Adel Anwar Abdel Aziz and Reham Aly Ibrahim

ABSTRACT

The present study evaluated biofilm forming capacity, the adherence of Staphylococci spp. to different orthopedic biomaterials and the presence of both icaA and icaD genes among staphylococci strains isolated from patients suffering from orthopedic implant infections. We studied 53 Staphylococcal strains from infections related to orthopedic implants, as regards their ability to form biofilm by using microtitre plate method (MTP), in vitro evaluation of the ability of the biofilm forming strains to adhere to certain biomaterials that used in orthopedic surgery and detection of ica A and ica D among the isolates. 90.9% of S. aureus strains were biofilm positive while, 95% of Coagulase negative staph. were biofilm forming, PMMA demonstrated a significantly highest adherence (P<0.05) followed by stainless steel while, the lowest adherence exhibited by titanium and Biofilm producing strains were positive for icaA and icaD genes while, biofilm negative strains were negative for both genes. Staphylococcus spp. are the major pathogens in orthopedic implants infections. Titanium biomaterials are less susceptible for adherence by bacteria. Biofilms are considered the key factor in the development of implant-related infections.

Keywords: Adhesion, orthopedic biomaterials, Staphylococci and slime.

INTRODUCTION

More than half of prosthesis-associated infections are caused by S. epidermidis and S. aureus (Zimmerli and Ochsner, 2003) with biofilm formation representing a major step in their pathogenesis. Biofilm offers protective barrier to organisms, resulting in resistance to antimicrobial agents (Darouiche et al., 1994) and host immune responses (Brady et al., 2006; Bjarnsholt et al., 2008). Recently, the genetic control of the slime production has been determined (Mckenney et al., 1999). Synthesis of the capsular polysaccharide is mediated by the ica operon. On activation of this operon, a polysaccharide intercellular adhesin (PIA) is synthesized. This supports cell-to-cell bacterial contacts by means of a multilayered biofilm. The PIA is composed of linear β-1,6-linked glucosaminylglycans.
It is synthesized in vitro from UDPN-acetylglucosamine by the enzyme N-acetylglucosaminyltransferase, which is encoded by the intercellular adhesion (ica) locus and, in particular, by the icaA gene. Sole expression of icaA induces only low enzymatic activity, but co-expression of icaA with icaD significantly increases the activity and is related to the phenotypic expression of the capsular polysaccharide (Gerke et al., 1998).

In routine orthopedic surgery, several different foreign materials are regularly implanted, e.g. bone cement, polyethylene compounds, and different metal alloys. Biomaterials have different affinities for bacteria (Oga et al., 1993). In general, an increase in surface roughness enhances bacterial colonization and early biofilm formation (Arnold and Bailey, 2000).

In this study we investigated incidence of biofilm formation among Staphylococcus spp. isolated from patients with orthopedic implants, in vitro evaluation of biofilm formation on polymethylmethacrylate (PMMA) bone cement and certain metallic biomaterials and the occurrence of icaA and icaD genes for slime production in a collection of S. epidermidis clinical isolates by a simple, rapid and reliable polymerase chain reaction (PCR).

MATERIALS AND METHODS

Bacterial Strains

53 clinical isolates of Staphylococcus spp. were included in the study. The strains were isolated from orthopedic implants (prostheses, plates, pins and screws, intramedullary nails and screws of stain.

ORTHOPEDIC BIOMATERIALS

Commercially available Kirschner-wires (K-wires) and screws of stainless steel and titanium; Suzhou ideal Medical Instrument Co. Ltd., France and Cemex® PMMA (poly methyl methacrylate) (bone cement): Tecres medical high technology, Verona, Italy.

PHENOTYPIC AND QUANTITATIVE CHARACTERIZATION OF BIOFILM FORMATION USING MICROTI TRE PLATE (MTP) (Christensen et al., 1985)

Staphylococcus isolates were screened for their ability to form biofilm. Organisms isolated from fresh agar plates were inoculated in 10 ml of trypticase soy broth with 1% glucose. Broths were incubated at 37°C for 24 h. The cultures were then diluted 1:100 with fresh medium. Individual wells of sterile 96 well flat bottom polystyrene tissue culture treated plates were filled with 200 μl of the diluted cultures. Negative control wells contained inoculated sterile broth. The plates were incubated at 37°C for 24 h. After incubation, contents of each well were removed by gentle tapping. The wells were washed with 0.2 ml of phosphate buffer saline (pH 7.2) four times. This removed free floating bacteria. Biofilm formed by bacteria adherent to the wells were fixed by 2% sodium acetate and stained by crystal violet (0.1%). Excess stain was removed by using deionized water and plates were kept for drying. Crystal violet-stained biofilm was solubilized in 200 μl of 95% ethanol (to extract the violet color), of which 125 μl were transferred to a new polystyrene microtiter dish, which was then read. Optical density (OD) of stained adherent biofilm was obtained by using micro ELISA autoreader at wavelength 570 nm. The experiment was performed in triplicate and repeated three times. To compensate for background absorbance, OD readings of wells with ethanol were used as blank and subtracted from all tests’ values. Biofilm production is considered high (> 0.240), moderate (0.120 - 0.240) or weak/none (< 0.120).

IN VITRO DEVELOPMENT OF BACTERIAL BIOFILMS ON ORTHOPEDIC BIOMATERIALS (Bahna et al., 2007)

Comparison of biofilm formation on the following three different biomaterials was done.

- Titanium Kirschner wires (1 cm length).
- Stainless steel Kirschner wires (1 cm length).
- PMMA (poly methyl methacrylate) (bone cement): PMMA bone cement was prepared in accordance with the manufacturer’s instructions by mixing the powdered methyl methacrylate with the liquid monomer in a bowl using a spatula. The cement mixture was immediately placed between two glass plates covered with nonadhesive backing paper, which were pressed together to form a sheet of cement approximately 1 mm thick. Following hardening of the cement, 1 cm² sections were cut with a sterile scalpel blade and stored under dark, sterile conditions at room temperature (Ramage et al., 2003).

These biomaterials were placed in 1ml of donor calf serum and incubated overnight at 37 °C. biomaterials were then immersed in 1ml of Mueller–Hinton broth inoculated with 5.5×10⁷ CFU/ml of a clinical biofilm-forming bacterial isolates and incubated overnight at 37 °C. The broth was then replaced with 1ml of 0.9% sterile saline and washed with shaking for 30 min. to discard any planktonic bacteria. Without disturbing the biofilm, the biomaterials were then transferred to 5ml of 0.9% saline, sonicated to dislodge the bacterial biofilm for 15 min and vortexed for 30 s. An aliquot of 100 μl was spread onto trypticase soy agar with 5% sheep blood, incubated for 24 h at 37 ºC and then counted. A value of 100 CFU was used for any plate that had at least 100 colonies. Final colony counts were then calculated accounting for the dilution factor.

SCANNING ELECTRON MICROSCOPE (SEM) (Hudetz et al., 2008)

Orthopedic biomaterials (PMMA sections, stainless steel and titanium wires) were fixed in 2.5 % (v/v) glutaraldehyde in Dulbecco PBS (PH 7.2) for 1.5 h., rinsed with PBS, and then dehydrated through an ethanol series. Samples were critical point
dried and gold-palladium coated. SEM examinations were made on JSM-840 SEM.

PCR DETECTION OF ICA A AND ICA D GENES IN SLIME PRODUCING STAPHYLOCOCCI STRAINS

Bacterial DNA extraction (Seif El-Din *et al.*, 2011)

Bacterial DNA was extracted from *staphylococcal* pure colonies grown on blood agar and suspended in nutrient broth using QIAamp Mini DNA extraction kit according to the manufacturer's instructions.

PCR method for amplification of icaA and icaD sequences (Arciola *et al.*, 2001)

For the detection of *icaA* gene 5-TCTCTTGAGAGCAATCAA-3 was used as the forward primer (corresponding to nucleotides 4796–4815) and 5-TCAGGGACTAATCCAGCA-3 was used as the reverse primer (corresponding to nucleotides 4964–4983). For *icaD*, 5-ATGGTCAGCCCCAGACAGAG-3 was used as the forward primer (corresponding to nucleotides 5422–5441), and 5-CGTGTTTTCAACATTTAATGCCA-3 was used as the reverse primer (corresponding to nucleotides 5616–5597). Reaction mixtures (50 μl) contained 25 μl PCR master mixtures, 1 μl of each primer (0.1-0.5 μM final concentration), 18 μl RNA ase free water & 5 μl of template DNA. Amplifications were performed with the following thermal cycling profile an initial denaturation at 94°C for 2 min., followed by 30 cycles of amplification (denaturation at 94°C for 1 min., primer annealing at 60°C for 1 min., and extension at 72°C for 2 min.) and a final extension for 4 minutes. After amplification, 10 μl of the PCR mixture was analyzed by agarose gel electrophoresis. Amplicons for *icaA* and *icaD* produced fragments of 188 and 198 bp, respectively. The amplified product sizes were estimated by comparison with 100 bp DNA ladder.

STATISTICAL ANALYSIS

One-Way ANOVA to evaluate any significant difference between values viable bacterial counts among different biomaterials but unpaired t-test was used to evaluate any significant differences of viable bacterial counts among stainless steel and titanium. Differences were done using graphpad prism 5 software. *P* values < 0.05 were considered significant.

RESULTS AND DISCUSSION

Phenotypic and quantitative characterization of biofilm formation using microtitre plate method (MTP)

Biofilm production assessed by MTP revealed that 30 (90.9%) strains of *S. aureus* were biofilm positive and 19 strains (95%) of Coagulase negative staph. were biofilm forming. Quantitative biofilm production showed that 22 (76.7%) strains were strong biofilm producers with readings > 0.240, 8 (24.2%) strain was moderate biofilm producer, with readings 0.120 - 0.240 and 3 (9.1%) strains were non-biofilm producers with readings < 0.120.

In CONS, 13 (65%) strains, were strong biofilm producers, 6 (30%) was moderate biofilm producers and One (5%) strains were non-biofilm producers.

Fig. 1: Quantitative detection of biofilm production by MTP- high (C), moderate (B) and non slime producers (A) differentiated by crystal violet staining in 96 well microtiter plates.

Fig. 2: SEM of in vitro adherence of *Staphylococcus* spp. to PMMA sections (biofilm was shown to be composed of many multilayered bacterial colonies, forming different sized colony Masses) (A) and metallic biomaterials (less biofilm layer was observed) (B) (× 7500).

Fig. 3: PCR detection of *icaA* (A) and *icaD* (B) genes. Lane 1, molecular size marker (100 bp Ladder); lanes 2, 4, 5, 6, 7, 9 and 10, *icaA* at 188 bp and *icaD* at 198 bp; lane 8, 3 negative biofilm (DNA template absent).
In-vitro development of bacterial biofilms on certain orthopedic biomaterials

Significant differences (P<0.05) were observed in the adherence of bacterial isolates to each of the biomaterials. PMMA demonstrated a significantly highest adherence (P<0.05) followed by stainless steel while, the lowest adherence exhibited by titanium.

PCR detection of ica A and ica D genes in slime producing Staphylococci strains

The presence of adhesion genes (ica A and ica D) were investigated in biofilm forming and non forming Staphylococcal strains. These biofilm producing strains isolated from orthopedic implants were found to be positive for both genes, giving a 188-bp band for icaA, and a 198-bp band for icaD genes. It was also found that these strains which were positive for icaA were also positive for icaD but absence of both genes in non biofilm forming strains.

DISCUSSION

In the present study we have assayed isolated staphylococcal strains isolate for qualitative biofilm forming ability by microtitre plate method. There were 90.9 % strains of S. aureus and 95% of CONS biofilm forming. Similar results were reported by Bartoszewicz et al. (2007) who found that most of 16 strains (E. coli, S. aureus, S. epidermidis and enterobacter) isolated from metal orthopedic components were able to form a biofilm. However Arciola et al. (2005) reported that among clinical 342 isolates of S. epidermidis from orthopedic infections, 126 (36.8%) were identified as exopolysaccharide-forming strains, while 216 (63.2%) were found to be CRAB-negative using Congo Red Agar (CRA) test. This study described the formation of Staphylococcal isolates biofilm on different orthopedic biomaterials (bone cement, stainless steel and titanium). Significant differences (P<0.05) were observed in the adherence of bacterial isolates to each of the biomaterials. PMMA demonstrated a significantly highest adherence (P<0.05) followed by stainless steel while, the lowest adherence exhibited by titanium. These differences in the ability of adhesions may be due to possessing different surface finish and therefore a different surface roughness. Similar results were obtained by Arens et al. (1996) who demonstrated lower rates of infection for titanium dynamic compression plate (DCP) compared to stainless steel DCP in the presence of a local bacterial challenge In an animal experiment with statistical significance.

Sheehan et al. (2004) studied pre- and direct inoculation with Staphylococcus aureus and epidermidis on titanium and stainless steel metallic implants in rabbits, it was found that Staphylococcus epidermidis showed lower adhesion ability to metals, and biofilms adhered in greater numbers to stainless steel over titanium. These results are close to the present findings.

Pettie et al. (1985) Confirmed the present results in an animal model by measuring the (ID90 dose), the amount of microorganisms necessary to cause an implant associated infection in 50% of dogs. Stainless steel, PMMA, cobalt chromium alloy and other biomaterials were inserted in vivo in animal femora and infected with Staphylococcus aureus, epidermidis and enterococcus sp. PMMA reduced the ID90 compared to other biomaterials.

The presence of both ica A and ica D genes in biofilm forming Staphylococci spp. is supported by the results of a study done by Arciola et al. (2003). These findings are consistent with those of other studies, which showed a high incidence of slime producing Staphylococci in isolates from infections of different original (El-Mahallawy et al., 2009; Seif El-Din et al., 2011).

CONCLUSION

PMMA demonstrated a significantly highest adherence followed by stainless steel while, the lowest adherence exhibited by titanium. These findings should be put into consideration regarding susceptibility of the implants to microbial infection and adhesion. Our findings indicate an important role of ica genes as a virulence marker for Staphylococcal isolates. Its association with the biofilm forming strains strongly suggest that expression of icaA and icaD genes plays a role in the pathogenetic mechanisms of infection associated with orthopedic implants.

REFERENCES

