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ABSTRACT
Endophytic fungi are organisms that live within intercellular tissues of healthy plants and are able to produce a huge 
variety of secondary metabolites with a broad spectrum of use. The endophytic fungus Cochliobolus sp. G2-20, still 
little known, and can effectively produce bioactive compounds. It was isolated from Sapindus saponaria L., a plant 
with antimicrobial effects. The aim of this study was to obtain secondary metabolites from the fungus Cochliobolus sp. 
G2-20 isolated from medicinal plant S. saponaria L., to characterize the main compounds of crude extract of secondary 
metabolites and to evaluate their antimicrobial activity. The endophytic fungus was grown in potato dextrose broth 
for 7 days without agitation at a temperature of 28°C. It was used for the filtration followed by centrifugation to the 
obtainment of broth without mycelium. The supernatant was partitioned with ethyl acetate resulting in an extract 
that was fractionated and used to identify metabolite compounds. After chromatographic procedures, the fractions 
were analyzed by 1H (300 MHz) and 13C (75.5 MHz) nuclear magnetic resonance for identification of the chemical 
components. Curvularin was identified from fraction D being the main substance produced by Cochliobolus sp. G2-20, 
and had an inhibitory effect on growth of the fungi Moniliophthora perniciosa, Didymella bryoniae, and Fusarium 
solani forma specialis (f. sp.) glycines, and bacteria Micrococcus luteus, Xanthomonas axonopodis pv. phaseoli, 
Staphylococcus aureus, Escherichia coli, and Enterococcus hirae. The extract of the endophytic fungus Cochliobolus 
sp. showed antibacterial and antifungal activities, thus confirming its potential for biotechnological applications.

INTRODUCTION
There are several interactions types between fungal and 

plant host as epiphytic, endophytic, pathogenic, and saprophytic 
(Manamgoda et al., 2011). Hence, it could be observed in 
the Cochliobolus species (as so Anamorphs), the endophytic 
association to various plant hosts as Triticum aestivum (Larran 
et al., 2007), Piptadenia adiantoides (Campos et al., 2008), Hevea 

brasiliensis (Gazis and Chaverria, 2010), Luehea divaricata 
(Bernardi-Wenzel et al., 2010), S. saponaria (Garcia et al., 
2012a), and Piper hispidum (Orlandelli et al., 2012) with isolation 
frequency less than 10%, which is lower than the emergence of 
endophytes in others vegetables (Suryanarayanan et al., 2002; 
Thongkantha et al., 2008).

The bioactive compounds as antimicrobial 
metabolites produced by Cochliobolus species are poorly 
described. However, the combination of plant and endophytic 
microorganisms has different metabolites in response to 
pathogens than the plant without endophytes or the endophytes 
alone. Therefore, antibacterial and antifungal activities tests are 
routinely conducted to identify the biological potential of this 
endophyte in controlling the known pathogens from plants and 
humans (Chagas et al., 2015).
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Endophytic microorganisms are fungi and bacteria that 
inhabit inter- or intracellular spaces of tissues or plant-organs at least 
one phase of plant life cycle. These plant–endophyte interactions 
needs of a complex establishment of metabolic and genetic factors 
to provide simbiotics and/or mutualistic relationships between 
organisms (Kusari et al., 2012). This balanced interaction could 
produce several compounds that can be protective effects in the 
hosts against insects, pathogens, can reduce the herbivory, and 
others biotic and abiotic factors (Arnold et al., 2003; Azevedo 
et al., 2000; Firáková et al., 2007; Kaneko et al., 2010; Mejía et al., 
2008; Terhonen et al., 2016). Thus, endophytic microorganisms 
have an economic and ecological potential as exploration sources 
of bioactive compounds with greater viability when compared 
with biocompounds from plants (Romão-Dumaresq et al., 2016; 
Schulz et al., 2002; Strobel et al., 2004; Yan et al., 2017).

This study was isolated, identified the chemical 
components, and evaluated the antifungal and antibacterial activity 
of metabolic fractions of an extract from Cochliobolus sp. G2-20 
isolated from S. saponaria.

MATERIALS AND METHODS

Fungal material
The endophytic fungus Cochliobolus sp., strain G2-

20 (ITS1-5,8S-ITS2 Genbank accession number: GQ461566.1) 
was isolated from inside the leaf tissue of S. saponaria by Garcia 
et al. (2012a). This strain belongs to the Laboratory of Microbial 
Biotechnology, State University of Maringá, Paraná, Brazil.

Fermentation and compound extraction
In accordance with the previous results of Cochliobolus 

sp. G2-20 (Garcia et al., 2012a), the endophyte grown in petri 
dishes with potato-dextrose agar (Himedia, Mumbai, India) at 28°C, 
approximately 7 days before transferal to broth. To isolate secondary 
metabolites, the method used by Rukachaisirikul et al. (2008) and 
Flores et al. (2013) was followed with some modifications as: the 
incubation time was 7 days at 28°C under stationary conditions; after 
remove the cellular debris by centrifugation step, the supernatant 
was partitioned twice with ethyl acetate at a ratio of 1:1 (100 ml 
of solvent in 100 ml of fermented medium). Therefore, the solvent 
was evaporated in the rotary evaporator (Marconi MA 120) at 40°C, 
resulting in the crude extract.

Purification and identification of chemical constituents
The procedures of chemical analyzes were adapted from 

Specian et al. (2012) and Flores et al. (2013). The chemical profile 
of extract was evaluated by thin layer chromatography (TLC). 
Thereafter, a liquid chromatographic column was used to separate 
compounds using a column of silica gel LH-20 as the stationary 
phase, and methanol (MeOH) as the mobile phase. This process 
resulted in 80 fractions (numbered 1–80). These fractions were 
also analyzed by TLC for grouping by similarity resulting in 11 
final fractions with different weight: A (6.9 mg), B (4.6 mg), Ccrystal 
(7.2 mg), Cs (101.1 mg), Ds (62.5 mg), D (7.7 mg), EF (43.5 mg), 
H (42.8 mg), I (15.1 mg), and JK (10.2 mg). The Ccrystal, Cs, and Ds 
terminologies are due to the formation of crystals or of a supernatant 
when resuspended with ethyl acetate. Fractions Ccrystal, D, EF, and 
I were chosen for analysis by nuclear magnetic resonance (NMR) 

of 1H (300 MHz) and 13C (75.5 MHz) for elucidating the chemical 
structures present in the fractions. These fractions were chosen, 
because they had greater purity when analyzed by TLC.

Antibacterial assay
Human pathogenic bacteria used were Micrococcus 

luteus (ATCC 9341), Salmonella typhi (ATCC 19430), Escherichia 
coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), 
and Enterococcus hirae (ATCC 1227). The phytopathogenic 
bacterium used was Xanthomonas axonopodis pv. phaseoli from 
the collection of pathogenic microorganisms of Cenargen – 
Embrapa Genetic Resources and Biotechnology.

The bacteria grew for 24 hours in Luria–Bertani (LB) 
broth at 37ºC, except for X. axonopodis that grown at 28ºC. 
The cultures were adjusted to a concentration of 106 cells/ml, as 
described by Sambrook and Russell (2001). The antibacterial assay 
of subfractions Ccrystal, D, EF, and I was performed in accordance 
with Flores et al., (2013). Tetracycline (Sigma) at 50 µg ml−1 was 
used as positive control.

Antifungal assay
The antifungal test was performed according to Gomes-

Figueiredo et al. (2007) with some modifications described by 
Flores et al. (2013). The pathogenic fungi used were Sclerotinia 
sclerotiorum, Fusarium solani f. sp. glycines, Moniliophthora 
perniciosa, Colletotrichum gloeosporioides, and Didymella 
bryoniae which belong to the collection of microorganisms at 
the Microbial Biotechnology Laboratory, State University of 
Maringá, Paraná, Brazil, and they were tested the subfractions 
Ccrystal, D, EF, and I. The negative controls were water and MeOH 
and the positive control used were the fungicide Derosal plus® 
(carbendazim + thiram, Bayer) at a dilution of 10−1. 

Statistical analysis
All experiments testing the antimicrobial activity 

were performed in triplicate and analyzed using a completely 
randomized design. The results were evaluated by the analysis of 
variance followed by Tukey’s (p < 0.05) test for comparison of 
means. Sisvar v.5.3 was used for the analysis (Ferreira, 2011).

RESULTS AND DISCUSSION
Endophytic fungi and bacteria are a new source of 

bioactive molecules, producing different kinds of metabolites as 

Figure 1. The molecular structure of curvularin, C16H20O5.
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potential pharmaceutical drugs as those produced by plants and 
marine organisms (Firáková et al., 2007; Ramasamy et al., 2010).

Fraction D revealed a characteristic 1H NMR spectrum. 
The NMR spectra of 1H and 13C were compared with the published 
data (Dong et al., 2014), allowing the identification of the major 
compound as curvularin (Fig. 1; Fig. 2A–F; and Table 1).

The curvularin extracted from fraction D present an 13C 
NMR spectrum of δ 209.91 (C, C-9), 172.90 (C, C-1), 161.41 (C, 

C-5), 159.69 (C, C-7), 137.40 (C, C-3), 121.01 (C, C-8), 112.38 
(CH, C-4), 102.84 (CH, C-6), 73.94 (CH, C-15), 44.79 (CH2, 
C-10), 40.86 (CH2, C-2), 32.13 (CH2, C-14), 27.87 (CH2, C-12), 
25.80 (CH2, C-13), 24.00 (CH2, C-11), and 20.64 (CH3, CH3-15),  
very similar to the compound curvularin (Dong et al., 2014;  
Ye et al., 2015) (Table 1).

Curvularin is a macrolide antibiotic produced by a large 
number of species of fungi from several genera, among which 

Figure. 2. (A) NMR spectrogram analyses based on curvularin identification in fraction D from an ethyl acetate extract obtained from Cochliobolus sp. G2-20: NMR 
spectrogram of 1H (δCD3OD; 300MHz); (B) NMR spectrogram analyses based on curvularin identification in fraction D from an ethyl acetate extract obtained from 
Cochliobolus sp. G2-20: expansion of 1H Region 2.50–3.50 ppm; (C) NMR spectrogram analyses based on curvularin identification in fraction D from an ethyl 
acetate extract obtained from Cochliobolus sp. G2-20: spectrum of 13C (δCD3OD; 75.5 mHz); (D) NMR spectrogram analyses based on curvularin identification in 
fraction D from an ethyl acetate extract obtained from Cochliobolus sp. G2-20: spectrum of heteronuclear single quantum coherence (HSQC) (δCD3OD); (E) NMR 
spectrogram analyses based on curvularin identification in fraction D from an ethyl acetate extract obtained from Cochliobolus sp. G2-20: expansion of spectrum 
by HSQC (region of 20–34 ppm in F1); (F) NMR spectrogram analyses based on curvularin identification in fraction D from an ethyl acetate extract obtained from 
Cochliobolus sp. G2-20: spectrum of distortionless enhancement by polarization transfer (DEPT) (δCD3OD).
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Curvularia, Penicillium, and Alternaria. It has been identified 
as protein 90 (HSP90) inhibitors. HSP90 is a chaperone that is 
involved in cell signaling, proliferation, and survival (Aly et al., 
2010). Thus, curvularin represents a promising treatment for 
cancer, as well as a potential antibiotic and herbicide (Jiang et al., 
2007; Tilley and Walker 2002).

Initially, this compound was identified as produced by 
Curvularia sp. and later from Penicillium steckii (Vesonder et al., 
1976). Jiang et al. (2007) isolated a similar compound called 
β-dehydrocurvularin from the endophytic fungus Curvularia 
eragrostidis, of interest due to its potential as biological control 
of the weed Digitaria sanguinalis showing significant inhibitory 
effect on seed germinations, in addition to causing extensive 
necrosis in leaves of many known weeds while corn and soybeans 
remained unaffected; therefore, β-dehydrocurvularin was 
considered as a natural bioherbicide (Jiang et al., 2007).

This is the first report in which curvularin was isolated 
from Cochliobolus endophytic strains. It has already been detected 
in Curvularia and it has been identified in soil Cochliobolus 
(Ghisalberti and Rowland 1993).

Five humans pathogenic and one phytopathogenic 
bacteria were used to test the antibacterial effect of the extracts 
produced from Cochliobolus sp. G2-20. All metabolic fractions 
showed some activity against all bacteria. There was significant 
inhibition of the phytopathogenic bacterium Xanthomonas 
axonopodis pv. phaseoli and pathogenic bacteria S. typhi, M. 
luteus, S. aureus and E. coli (Table 2).

Garcia et al. (2012b) observed a significantly positive 
inhibitory action of the crude metabolic extracts produced by the 
endophytic Cochliobolus G2-20 against the bacteria M. luteus 
(ATCC 9341), S. aureus (ATCC 25923), E. coli (ATCC 25922), S. 
typhi (ATCC 19430), and E. hirae (ATCC 1227). However, in this 
study, the metabolic fractions isolated from this endophyte did not 
have an inhibitory effect on E. hirae.

Hormazabal and Piontelli (2009) reports that the 
metabolite produced by Curvularia protubera, an endophyte from 
Chilean native gymnosperms, had the greatest inhibitory activity 
on Bacillus subtilis, M. luteus, and S. aureus, with inhibition zone 
diameters of 12, 9, and 16 mm, respectively. The metabolites 
tested by these authors do not present activity against E. coli, in 
contrast to our results.

The metabolic fractions Ccrystal, D, EF, and I had 
significant activity against pathogenic fungi M. perniciosa, F. 
solani f. sp. Glycines, and D. bryonae (Table 3). There was no 
inhibition of S. sclerotiorum and C. gloeosporioides; there was 
mycelial growth throughout the plate in all treatments except the 
positive control. 

According to Cappelletty and Rybak (1996) and Corning 
(2000), it is important to pay attention to toxins that are not usual, to 
be present as isolates in the natural environment. Hence, about the 
assay of fractions of extracts of fungi, the metabolites could have 
synergistic effects, with higher action than those produced by each 
metabolite separately. It is important considering divergent effect 
of fungal extracts and its metabolic fractions. Cochliobolus species 

Table 1. 1H (300 MHz) and 13C (75.5 MHz) NRM (δCD3OD) spectrum data of fraction D and of 
curvularin (Dong et al., 2014).

Fraction D Curvularin

H/C DEPT δH (mult.; J in Hz) δC δH (mult.; J in Hz) δC

1 C0 - 172.9 - 171.5

2 CH2

3.86 (d; 15.6 Hz)

3.61 (d; 15.9 Hz)
40.86

3.62 (d; 15,8 Hz)

3.62 (d; 15.8 Hz)
39.1

3 C0 - 137.40 - 135.8

4 CH 6.10 (d; 2.1 Hz) 112.38 6.24 (d; 2.2 Hz) 110.9

5 C0 - 161.41 - 159,7

6 CH 6.24 (d; 2.4 Hz) 102.84 6.69 (d; 2.2 Hz) 101.4

7 C0 - 159.69 - 158.2

8 C0 - 121.01 - 119,5

9 C0 - 209.91 - 208.5

10 CH2

1.58 (m)

1.45 (m)
44.79 43.3

11 CH2

3.23 (dd; 2.7 Hz)

3.18 (dd; 2.5 Hz)
24.00

3.18 (ddd; 2.7, 9.0, 15.3)

2,75 (ddd; 2.6, 9.6; 15.2)
22.5

12 CH2

1.30 (m)

1.20 (m)
27.87

1.74 (m)

1.55 (m)
26.3

13 CH2

1.42 (m)

1.28 (m)
25.80

1.32 (m)

1.44 (m)
23.5

14 CH2

1.56 (m)

1.46 (m)
33.13

1.59 (m)

1.45 (m)
31.6

15 CH 4.82 (m) 73.94 4.91 (m) 72.2

CH3-15 CH3 1.12 (d; 6.3 Hz) 20.64 1.12 (d; 6.4 Hz) 19.1
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have been used for the biological control of plague grasses, such as 
crabgrass. Where the fungus was applied, grasses displayed typical 
disease symptoms like death or reduced growth. This fungus can be 
applied directly to the leaves, and the inclusion of additives such as 
glucose-based surfactants or starch may improve the action of the 
fungus (Tilley and Walker 2002).

CONCLUSION
The endophytic fungus Cochliobolus sp. G2-20, isolated 

from leaves of the plant S. saponaria produces metabolites, 
largely curvularin, a plant and fungal compound also produced by 
endophytic fungi of the genus Curvularia. The fraction C and D 
that contained curvularin has showed antifungal and antibacterial 
properties.
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