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Excessive alcohol consumption is associated with cognitive and behavioral impairments. Drosophila melanogaster 
is a commonly used model for learning, memory, and motor function studies. We looked at Garcinia binucao to 
determine the ability of its crude ethanolic leaf extract to reduce deficits in learning, short-term memory, and motor 
functions due to alcohol exposure. Chronic alcohol exposure significantly decreased motor function by 22% (p < 
0.05), learning function by 37% (p < 0.05), and short-term memory by 33% (p > 0.05). However, in flies fed with 
G. binucao extract (GBE) chronically exposed to alcohol effects of certain compounds, no significant reductions in 
motor, learning and in short-term memory functions were observed; instead, these functions increased (p < 0.05) in 
a dose-dependent manner, suggesting that the extract is not only neuroprotective but is also potentially nootropic. 
GBE had low antioxidant activity despite the presence of triterpenes, flavonoids, and quinones, although these 
may have contributed minimally to the neuroprotective ability of GBE. The neuroprotective ability of GBE may 
then be explained by other mechanisms not dependent on the direct radical or oxidant scavenging properties of the 
phytochemicals in GBE, as in the modulation of signaling cascades which prevent neuronal apoptosis.
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INTRODUCTION
Alcohol consumption is known to be highly prevalent 

in the general adult population. According to WHO 2010 data, 
47.7% of males and 28.9% of females worldwide are current 
drinkers (WHO, 2014). Approximately 38.9% of Filipinos are 
occasional alcohol drinkers, 11.1% are regular drinkers, while 
4.8% are heavy drinkers (Vinluan, 2003). It has been shown that 
the frontal lobes, limbic system, and cerebellum are vulnerable to 
damage caused by alcohol in a dose-dependent manner (Oscar-
Berman and Marinkovi, 2014).

Several researches on natural products have been 

conducted to discover new drugs which may improve the quality of 
life, serve as therapy for the disease, or neutralize the toxic effects 
of certain compounds including alcohol. The Philippines is known 
to have a diverse source of medicinal plants. Garcinia binucao—
which belongs to the family Clusiaceae, is endemic and widely 
distributed in the Philippines, particularly in the Visayas region, 
including Negros Occidental, Iloilo, Samar, Leyte (Quevedo et al., 
2015). Aside from being a source of food, G. binucao is also noted 
for its folkloric medicinal properties. In the Cordillera region, 
G. binucao is used for suppressing “agas ti nginao” (conceiving 
mothers’ cravings), cough, flu, and arthritis (Chua-Barcelo, 2015). 
Its fruit and leaves are also used as a souring agent in different 
provinces in the Philippines. Despite its prevalence and widespread 
use, there have been few studies on G. binucao. However, a 
close relative, Garcinia mangostana, more commonly known as 
mangosteen, has been hailed as a “super fruit” health supplement 
with anti-cancer, anti-inflammatory, and anti-neurotoxic activities 
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(Pedraza-Chaverri et al., 2009; Gutierrez-Orozco and Failla, 
2013; Tangpong et al., 2012). Phytochemical analysis of various 
extracts from several Garcinia species also yielded several anti-
oxidant compounds, such as xanthones, triterpenoids, carotenoids, 
phenolic compounds and biflavonoids, all of which are established 
components in plant anti-oxidant systems (Rukachaisirikul et 
al., 2000, Hemshekhar et al., 2011). G. binucao, thus, has high 
potential to also possess these compounds and the accompanying 
properties.

Considering prevalent chronic alcohol consumption in 
the population which may lead to ethanol-induced neurotoxicity, 
and the known widespread use of G. binucao which may have 
potential anti-neurotoxic properties, this study aims to determine 
the effects of G. binucao crude leaf extract on the motor, learning, 
and short-term memory functions of D. melanogaster against the 
neurotoxic effects of chronic ethanol exposure, as well as sex-
specific differences that may be observed.

MATERIALS AND METHODS

Specimen collection and crude extraction
One kilogram of G. binucao leaves were collected from 

Sitio Pastolan, Tipo, Hermosa, Bataan. A voucher specimen was 
prepared and submitted to the Botany Division of the National 
Museum of the Philippines for taxonomic identification.

The collected G. binucao leaves were washed 
thoroughly with distilled water and air dried at room temperature. 
Dried samples were then crushed using a blender until uniformly 
powdered. Fifty grams of the powdered samples were soaked in 
500 mL of 95% ethanol for 72 hours and filtered using Whatman 
filter paper grade no. 41. The filtrate was evaporated under reduced 
pressure through rotary evaporation.

DPPH assay
Sample solutions, 400 μg/mL of the crude leaf extract 

and ascorbic acid as positive control were prepared and tested for 
antioxidant activity (Prieto et al., 1999). In a 96-well plate, 200 μL 
of the sample (in triplicate) was loaded in the first well and a two-
fold serial dilution was performed until the 12th well using buffer 
solution. Then 100 μL of 0.2 μM DPPH solution was added per 
well. The 96-well plate was incubated in the dark for 30 minutes 
at room temperature. Absorbance at 517 nm was read. Percent 
scavenging activity and EC50 values were computed.

Phytochemical analysis
Phytochemical analysis was performed in the Natural 

Products Laboratory of the Department of Biochemistry and 
Molecular Biology, the University of the Philippines Manila using 
1 gram of the crude leaf extract.

Drosophila culture and husbandry
Culture media preparation and longevity assays used 

in the study were based on the previous method (Velasco and 
Medina, 2014). The mass culture of Drosophila melanogaster 
used in this study was maintained on sweet potato-yeast media 
consisting of 500 g of sweet potato, 10 g of yeast and 15.4 g of 
agar in 1000 mL dH2O. The entire mixture was allowed to boil 
and to cool down to 60°C before adding 8 drops of pure propionic 

acid in order to inhibit the growth of microorganisms. The food 
media were stored at constant temperature and humidity in the 
laboratory. The same formulation for the food media was used for 
growing several generations of D. melanogaster.

For all subsequent assays, fruit flies were separated based 
on sex. The separation of sexes is important for the assays because 
the flies should not be allowed to mate to prevent an increase in 
the initial population. The flies were anesthetized first using the 
CO2. A few shots of CO2 were pumped into the vial through the 
cotton plug. The anesthetized fruit flies were then transferred to 
the fly pad. Sorting and sexing was done with a stereomicroscope 
by observation of sexual dimorphism (e.g., males are generally 
smaller and have a darker, more rounded abdomen, and tarsal sex 
combs on their first pair of legs).

Separately, 30 males and 30 female flies were used 
in each assay. Four treatments were used in all the assays. For 
the control set-up, the food media were used without addition 
of neurotoxic solvent, dimethyl sulfoxide, and G. binucao leaf 
extracts. It had the same formulation as to the food media used for 
growing generations of D. melanogaster.

Alcohol-induced oxidative stress and neurotoxicity
The vial plug was flooded with 0.5 mL of absolute 

alcohol and inserted in such a way that the ethanol-flooded side 
of the plug faced the flies. Flies were exposed to ethanol for five 
minutes daily. After each ethanol exposure, the flies were returned 
to their food vial. This procedure was done for 15 days after which 
the behavioral assays were then performed.

Negative geotaxis assay
Fruit flies that have been subjected to chronic alcohol 

exposure were then subjected to the negative geotaxis assay (Berger 
et al., 2011). Motor deficits resulting from ethanol-exposure 
toxicity were measured using the negative geotaxis assay. Eight 
groups of thirty flies: food-only control, ethanol-exposed control, 
1% DMSO, ethanol-exposed 1% DMSO, 1 mg/mL G. binucao, 
ethanol-exposed 1 mg/mL G. binucao, 200 µg/mL G. binucao, 
and ethanol-exposed 200 µg/mL G. binucao were placed in three 
different graduated vertical columns sealed at one end. The flies 
were allowed at least an hour to recover from the CO2 anesthesia 
and a minute to acclimatize to the new setting. The glass columns 
were then gently tapped to let the flies settle at the bottom of the 
vial. Subsequently, climbing activity was observed for a minute. 
The number of flies per group passing the 8 cm minimum height 
marker for every 10-second interval for one minute was measured 
and noted as a percentage of the total flies without observed motor 
deficits. Conversely, flies with motor deficits remained near the 
bottom or were slow-moving. This procedure was done for a total 
of three times per replicate.

Aversive phototaxis suppression assay—learning assay
Fruit flies that have been subjected to chronic ethanol 

exposure were then subjected to the aversive phototaxis 
suppression assay (Berger et al., 2011). A fly was then placed 
inside the dark chamber of the T Maze. All lights in the room were 
turned off with the exception of the red lamp. The fly was allowed 
to acclimatize to the dark chamber for around 30 seconds after 
which the light source from the lighted chamber was turned on 
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slowly. The trap door was then opened gradually to connect the 
two chambers. The fly was determined as positively phototactic 
and ready for training if it moved to the lighted chamber within 
45 seconds. Otherwise, the fly was noted as negatively phototactic 
and was excluded from the experiment.

The positively phototactic fly was relocated back to the 
dark chamber. The trap door and light were then closed and the fly 
was allowed to acclimatize to the dark chamber once more for 30 
seconds. Filter paper treated with quinine solution was then placed 
into the lighted chamber. Once the fly was acclimatized, the trap 
door and light were then slowly opened. The fly was allowed to 
walk into the lighted chamber with quinine treated filter paper. 
After 45 seconds, the fly was tapped back to the dark chamber, and 
the process was repeated 14 more times. Flies that failed to walk 
to the lighted chamber within 45 seconds were recorded as “Pass” 
which means that the task was learned through reinforcement. The 
pass rate of five consecutive trials was then recorded as PC0 (0 hr 
postconditioning).

Determination of short-term memory deficits
Each fly was then returned inside its food vial and was 

left alone for six hours after training and PC0 recordings. After 
6 hours, the fly was subjected to 5 more trials of the same test. 
The pass rate was recorded as PC6 (6 hours postconditioning) and 
served as an indicator of short-term memory.

RESULTS AND DISCUSSION

Antioxidant activity of G. binucao crude leaf extract
The computed EC50 value for the G. binucao crude leaf 

extract was 186.5 μg/mL, and for the positive control, ascorbic 
acid, 4.037 μg/mL. At 400 μg/mL sample concentration, the 
percent scavenging activity for the G. binucao crude leaf extract 
was 37.76%, compared to 81.47% for ascorbic acid.

G. binucao increased learning function of D. melanogaster
In flies not exposed to ethanol, there was an 11.10% 

increase in the learning function in flies treated with high dose 
G. binucao compared to untreated flies (Figure 1). However, 
no significant effect was reported across all treatments after 
conducting one-way ANOVA and Dunn’s multiple comparisons 
test. No significance was also noted for the individual sexes.

G. binucao significantly increased short-term memory 
function on D. melanogaster

In flies not exposed to alcohol, flies given a high dose 
of the extract displayed significantly increased memory function 
(p = 0.0142), with a 33.97% increase in pass rates compared to 
untreated flies. Upon taking sex-specific data, females displayed 
a similar trend (p = 0.0143) with a 45.86% increase in pass rate, 
while males did not. It should be noted that males treated with the 
high dose had a 16.94% increase in pass rates compared to the 
untreated flies (Figure 2).

Effect of G. binucao on D. melanogaster mortor function with 
chronic alcohol exposure

Chronic alcohol exposure significantly decreased the 
climbing pass rates of flies in the untreated group (p = 0.0040, 

unpaired two-tailed t-test) (Figure 3). Climbing pass rates of flies 
upon chronic alcohol exposure did not significantly differ in flies 
treated with high dose G. binucao (p > 0.05, unpaired two-tailed 
t-test). Interestingly, in flies treated with low dose G. binucao, 
chronic alcohol exposure significantly increased the climbing pass 
rate (p = 0.0025, unpaired two-tailed t-test).

Fig. 1: Learning function of D. melanogaster after 20 days of treatment with a 
low dose and high dose G. binucao. Average pass rates of flies (combined sexes, 
male, female) treated with control (food only), 200 μg/mL G. binucao (low dose 
Gb), and 1 mg/mL G. binucao (high dose Gb) for 20 days, were determined 
using the Aversive Phototaxis Suppression Assay.

Fig. 2: Short-term memory function of D. melanogaster after 20 days of 
treatment with low dose and high dose G. binucao. Average pass rates of flies 
(combined sexes, male, female) treated with control (food only), 200 μg/mL G. 
binucao (low dose Gb), and 1 mg/mL G. binucao (high dose Gb) for 20 days, 
were determined using the Aversive Phototaxis Suppression Assay six hours 
after training.

Tukey’s multiple comparison tests of one-way ANOVA 
showed that climbing pass rate of flies chronically exposed to 
alcohol treated with low dose G. binucao were significantly higher 
than the high dose group (p = 0.0333) but not with the untreated 
group (p > 0.05) (Figure 3A). Tukey’s multiple comparison tests 
of one-way ANOVA showed no significant differences between 
all-male groups (p > 0.05) and all female groups (p > 0.05) (Figure 
3B, 3C).

Male flies have higher geotactic activity after chronic 
alcohol exposure compared to female flies. This means that male 
flies are more resistant to sedation and show lesser impairment 
in motor function upon alcohol exposure. It was observed in a 
previous study that male flies are more resistant to ethanol sedation 
than female flies. Slower metabolism of ethanol was observed in 
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females compared to males, leading to an increased concentration 
of ethanol in the body, which then results in greater sedation 
sensitivity in females (Devineni and Heberlein, 2013).

Fig. 3: Comparison of motor function of fruit flies using the negative geotaxis 
assay. (A) males and females combined, (B) males only, and (C) females only 
after 15 days of treatment with a low dose and high dose Gb, in the presence and 
absence of chronic ethanol exposure (n = 30 per replicate).

It was previously studied that chronic alcohol exposure 
causes loss of postural control and negative geotactic activity in 
adult flies. It also results in motor impairment and sedation which 
can be attributed to the depressant nature of alcohol (Robinson et 
al., 2012). Chronic alcohol exposure can upregulate the sensitivity 
of NMDA receptors in the brain. This can result in a glutamate-
induced cytotoxic response in the brain. There will be a calcium 
influx through the NMDA receptors, which will then be taken up 

in the mitochondria causing the generation of reactive oxygen 
species that can disrupt the function of the mitochondria and 
plasma membranes. This results in impairments in neurological 
functions such as abstract problem solving, visuospatial and 
verbal learning, memory function, perceptual motor skills and 
even motor function (Harper and Matsumoto, 2005).

G. binucao prevents learning deficits from chronic alcohol 
exposure of D. melanogaster

In untreated flies, a significant 37.23% decrease in 
learning function (p = 0.0251) was noted (Figure 4) upon chronic 
alcohol exposure. Treatment with high dose and low dose G. 
binucao prevented this reduction in learning function. The learning 
function of flies treated with high dose G. binucao was 43.69% 
higher (p < 0.0001) compared to the untreated group (Figure 4A). 
Upon analysis of the sex-specific data set, females (Figure 4C) 
maintained a significant increase (p = 0.0009) while males (Figure 
4B) did not exhibit a significant increase (p = 0.1200) in learning 
function.

G. binucao prevents short-term memory deficits from chronic 
alcohol exposure of D. melanogaster 

There was an observed 33% reduction (see Figure 5A) in 
the short-term function of the flies after chronic alcohol exposure. 
However, no significance was observed upon doing statistical 
analysis. In flies chronically exposed to ethanol, treatment with a 
high dose of the extract significantly improved short-term memory 
compared to the untreated group (p < 0.0001). For the male-only 
set-ups (Figure 5B), significant differences were seen between the 
untreated and low dose groups (p = 0.0309), and the untreated and 
high dose groups (p < 0.0001), with the most significant change 
seen between the untreated and high dose groups. For the female 
set-ups (Figure 5C), a significant increase was noted between the 
low-dose and high-dose set-ups (p = 0.0159). Between the food 
and high-dose set-up, a p-value of 0.0556 was recorded indicating 
an almost significant difference.

There was an increase in the short-term memory 
functionin untreated female flies upon chronic alcohol exposure 
but no statistical significance was observed. However, the short-
term memory function in untreated male flies significantly 
decreased by 86% with chronic alcohol exposure. There was no 
significant increase reported between the ethanol-exposed and 
non-ethanol exposed set-ups with low and high dose extract 
treatments. There was no significant difference in the DMSO set-
ups across all experiments.

There was also an observed sexual dimorphism in 
cognitive ability: learning deficit was more profound in female 
flies chronically exposed to alcohol while short-term memory 
function was more impaired in male flies. These findings may 
be attributed to differences in neuronal and metabolic activities 
between male and female flies. Based on a previous study, there 
is little evidence for sex-specific neuronal regulatory adaptation in 
the brain, so differences observed may be more due to metabolic 
tolerance to alcohol rather than inherent cognitive abilities of the 
flies (Catalan et al., 2012).

Female flies are generally larger in size compared 
to males, which may have contributed in the differences in the 
total amount of intake (Testa et al., 2013; Wong et al., 2009). In 
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acute alcohol exposure, Paul Mark B. Medina, Biological Models 
Laboratory, Department of it has been shown that male flies have 
increased ethanol hyperactivity and a greater resistance to ethanol 
sedation compared to female flies (Devineni and Heberlein, 
2013). These differences in hyperactivity and resistance in acute 
settings may also explain the difference in chronic settings, where 
tolerance could have affected the overall toxic effect of alcohol. 
The observed greater impairment in short-term memory function 
in males, however, is not explained by this finding and may be due 
to a different mechanism.

Fig. 4: Learning functions of fruit flies using the aversive phototaxis suppression 
assay. (A) males and females average, (B) males only, and (C) females only, in 
the presence and absence of chronic ethanol exposure (n = 30 per replicate).

Phytochemical Analysis of G. binucao Crude Leaf Extract
Upon phytochemical analysis, G. binucao crude leaf 

extract tested positive for carbohydrates and reducing sugars, 

proteins and amino acids, triterpenes, quinones, and flavonoids 
(Table 1).

Phytochemical analysis of the G. binucao fruit has 
been done before but there have been no studies on its leaves. 
Xanthones (α-mangostin, gartanin, and isomangostin), sterols 
(β-sitosterol and stigmasterol), and monosaturated and saturated 
triglycerides have been isolated from the pericarp of G. binucao 
(Ragasa et al., 2014).

Table 1: Phytochemicals present in G. binucao.

Phytochemicals Indication

Carbohydrates and Reducing Sugars +

Proteins and Amino Acid +

Alkaloids -

Glycosides -

Steroids and Phytosterols -

Terpenes and Terpenoids +

Quinones +

Anthraquinones -

Saponins -

Flavonoids +

Phenols -

Tannins -

(+) – present; (-) – absent.

Phytochemical analysis of various extracts from other 
Garcinia species have been done in several studies before, and 
among the compounds isolated were hydroxycitric acid, flavonoids, 
terpenes, polysaccharides, procyanidines and polyisoprenylated 
benzophenone and xanthone derivatives. Xanthones have been 
found in most species and parts of the plant. In leaves, xanthones, 
quinones, garcinol, stigmasterol, flavones, among others, have 
been reported to be present (Hemshekhar et al., 2011). More 
than 60 xanthones have also been isolated from different parts 
of Garcinia mangostana, as well as benzophenones, flavonoids, 
and anthocyanins. In G. mangostana leaves, 1,5,8-Trihydroxy-3-
methoxy-2-(3-methylbut-2-enyl) xanthone and 1,6-Dihydroxy-3-
methoxy-2-(3-methyl-2-buthenyl)-xanthone have been identified 
(Obolskiy et al., 2009).

These phytochemicals may be involved in the 
neuroprotective properties of GBE. Flavonoids can induce brain 
perfusion, stimulate angiogenesis, neurogenesis, and changes in 
the morphology of neurons involved in learning and memory. 
They have also been shown to inhibit neuronal death caused by 
neurotoxicants and promote synaptic plasticity (Nehlig, 2012). 
Several xanthones from G. mangostana have reported hydroxyl 
radical scavenging activity in different assays, including the DPPH 
assay (Obolskiy et al., 2009). An isolated bioflavanoid complex 
of Garcinia kola seed, Kolaviron, was also shown to inhibit 
ethanol-induced oxidative stress in the liver of experimental 
rats (Hemshekhar et al., 2011). Further phytochemical analysis, 
screening for various other compounds, especially xanthones, and 
identifying more specific compounds is highly recommended to 
identify the active components of the extract.
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Fig. 5: Short-term memory functions of fruit flies using the aversive phototaxis 
suppression assay. (A) males and females average, (B) males only, and (C) 
females only with and without chronic ethanol exposure (n = 30 per replicate).

Although the antioxidant level of GBE is low, it still can 
contribute minimally to the neuroprotective properties of GBE. 
However, the neuroprotection that we have observed may be largely 
attributed to another mechanism that is not dependent on the direct 
radical or oxidant scavenging properties of the phytochemicals in 
GBE. Previous literature have shown that flavonoids can prevent 
the oxidant-induced neuronal injury by modulating a number of 
protein kinase and lipid kinase signaling cascades such as the 
PI3 kinase (PI3K)/Akt, tyrosine kinase, protein kinase C (PKC) 
and mitogen-activated protein kinase (MAP kinase) signalling 
pathways (Schroeter et al., 2001). Flavonoids have also been 

shown to prevent the activation of caspase-3 which prevent 
neuronal apoptosis and activation/phosphorylation of signalling 
proteins important in the pro-survival pathways (Vauzour et al., 
2007).

CONCLUSION
G. binucao crude ethanolic leaf extract supplementation 

prevented motor dysfunction and cognitive deficits due to chronic 
alcohol exposure, and enhanced motor, learning and short-term 
memory functions in D. melanogaster. Preliminary testing also 
showed that the extract exhibited minimal antioxidant activity 
despite the presence of phytochemicals such as triterpenes, 
quinones, and flavonoids. Other mechanisms aside from the 
antioxidant activity may be responsible for the protective 
properties of G. binucao against alcohol-induced neurotoxic 
effects on motor, learning, and short-term memory functions.
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