Quinine-Loaded Polymeric Nanoparticles: Validation of a simple HPLC-PDA Method to Determine Drug Entrapment and Evaluation of its Photostability

Luana Roberta Michels², Lisiane Bajerski¹, Tamara Ramos Maciel¹, Letícia Marques Colomé¹², Sandra Elisa Haas¹²*

¹ Curso de Farmácia, Universidade Federal do Pampa, UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil. ² Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Federal do Pampa—UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil.

ABSTRACT

Liquid chromatographic method was developed and validated for quantitative determination of quinine in polymeric nanoparticles. The method was performed using a Waters RP-18 column using a mobile phase consisting of acetonitrile:water:triethylamine (60:40:0.01 v/v/v, and pH aqueous phase adjusted to 3.0 with phosphoric acid). The flow rate was 1.0 mL min⁻¹ and the detection was achieved with a UV-PDA set at 232 nm. The response was linear over a range of 12.0 to 24.0 µg.mL⁻¹ (r = 0.9995). The relative standard deviation values for intra-day and inter-day precision studies were less than 2% and the accuracy was 98.8% to Nc1 and 97.3% to Nc2. The samples free of quinine and quinine-loaded polymeric nanoparticles were subjected to photodegradation conditions. A considerable reduction of degradation of quinine occurred in polymeric nanoparticles. Through these results, it was clear that the nanoencapsulation of quinine protects the drug from degradation by exposure to UV-A light. The analytical method was validated according to International Conference on Harmonization Guidelines and Center for Drug Evaluation and Research.

INTRODUCTION

Quinine (figure 1) is an alkaloid extracted from the bark of the cinchona and is the antimalarial drug that has been in use for over 400 years (Achan et al., 2012, De Oliveira, 2009). Generally it is used in monotherapy (Meshnick and Dobson, 2001), however, the adverse effects in high doses and the increasing parasite resistance to cinchona alkaloids have made necessary a combination with a second drug (WHO, 2012). This drug is used as a second line treatment of uncomplicated malaria and as preferential line treatment of malaria in (Taylor and White, 2004) the first trimester of pregnancy (WHO, 2010). It is rapidly absorbed orally and has a good tissue distribution, but is hardly accumulated, since it is rapidly metabolized and excreted (Salako and Sowunmi, 1992). The great advantage of quinine as an antimalarial is its adequate solubility for intravenous formulations and is of great importance in the treatment of patients who do not tolerate oral medication (Wiesner et al., 2003). However, the required high doses administration by the intravenous route can cause severe cardiac arrhythmia and even fatal hypotension (Vale et al., 2005). Besides that, quinine is photo unstable (Christensen et al., 2000). From this, an improvement of the quinine therapeutic index could play an important role in the treatment of drug resistant malaria. The drug carrier system has been extensively studied as vectors that allow control of drug delivery to specific sites in the treatment of many diseases (Duncan and Gaspar, 2011). Among these, we highlight the carrier nanoparticulate systems which are defined as colloidal particles, or pharmacologically active with the ability to carry therapeutic agents, which is in the nanometer range of 10 to 1000 nm (1µm) (Nagavarma et al., 2012, Caban et al., 2014). Quinine-loaded nanocapsules have been developed and shown to increase drug efficacy in rats infected with Plasmodium berghei (Haas et al., 2009). The essential characterization of drugs-loaded nanoparticles is particle size, zeta potential, polydispersibility, pH, entrapment efficiency and drug loading (Hall et al., 2007). For the last two, the quantification techniques play an important role. Quantification of quinine is usually by liquid chromatography system with fluorescence detection (Haas et al., 2009, Mirghani et al., 1998).
The MS detection is also used because of the high sensitivity and specificity of this technique for identification and quantification of drugs at low concentrations in raw materials, pharmaceutical formulations, and biological matrices (Brum et al., 2011). However, UV detection is often preferred, because it is cheaper and more easily available. No analytical techniques are described for dosing quinine in pharmaceutical formulations using high performance liquid chromatography (HPLC) and UV detection, which is sensitive to compounds that absorb light and are easy to operate as well as it possess a good stability and is more commonly used in HPLC analysis (Argenton, 2010).

MATERIAL AND METHODS

Chemical and Reagents

The Quinine (QN) (90% purity) was obtained from Sigma Aldrich Ltd (São Paulo, Brazil). Acetonitrile and methanol solvents were obtained from Tedia (Fairfield, USA). Purified water was prepared using a Milli-Q Plus (Millipore, Bedford, USA). All other reagents and chemicals used were of pharmaceutical or special analytical grade.

Instruments

The analysis were performed on a Shimadzu LC system (Kyoto, Japan), which consisted of a LC-20AT pump, a SPD-M20A photodiode array (PDA) detector, a CBM-20A system controller, a DGU-20A3 degasser and a SIL-20A autosampler. Data were acquired and processed using LC Solution software (Release 1.22 SP1). Chromatographic separation was achieved on a 5 μm Waters RP-18 column (4.6 mm x 300 mm), with a guard column (4 x 3 mm i.d.) packed with the same material. Photodegradation was carried out in a photostability UV chamber (1.0 x 0.17 x 0.17 m) with mirrors and equipped with an UV-A lamp (Orion, 352 nm, 30 W, 130 V) and UV cuvettes (BRAND®), used as a container for samples.

Chromatographic Conditions

The chromatographic analysis was performed at the standard temperature (23 ± 1 ºC), using a mobile phase composed of acetonitrile:water:triethylamine (60:40:0.01 v/v/v). The aqueous phase was adjusted to pH 3.0 with phosphoric acid). After preparation, the mobile phase was filtered through a 0.45 μm membrane filter (Millipore, Bedford, USA) and degassed using an ultrasonic bath for 20 min. The flow rate was 1.0 mL min⁻¹ and quinine was detected at 232 nm after injection of 20 μL.

Preparation of Quinine-Loaded Nanocapsules

Two different nanocapsules were prepared by interfacial deposition of PCL (Fessi et al., 1988; Haas et al., 2009), denominated formulation 1 (NC₁QN) and formulation 2 (NC₂QN). The organic phase NC₁QN was composed of poly (ε-caprolactone) (PCL) (0.1 g), Lipoid S45® surfactant (0.078 g), quinine (2 mg.mL⁻¹), caprylic/capric triglyceride (330 μL), prepared in acetone (27 mL) in temperature of 45 ± 1 ºC, which was added to the aqueous phase composed of distilled water (53 mL), polysorbate 80 (Tween 80®) (0.078 g) and polietilenoglicol (PEG 4000) (0.07 g). In the organic phase NC₂QN, the PCL polymer was replaced with the positively charged polymer Eudragit RS100® (0.1 g), the surfactant Lipoid S45® was replaced by Span 60® (0.078 g). The aqueous phase was composed of distilled water (53 mL) and Tween 80® (0.078 g). Nanocapsules without QN were also prepared and designed blank nanocapsules (NC₁BR or NC₂BR).

Preparation of Standard Solution and Samples

Stock solution of QN (1000 μg.mL⁻¹) was prepared by dissolving accurately weighed 10 mg in acetonitrile using 10 mL volumetric flask. Standard solution was prepared by dilution of the diluted stock solution with mobile phase to obtain solutions in a final concentration of 20 μg mL⁻¹. To prepare the sample solutions, 0.1 mL of nanoparticulate systems (2 mg.mL⁻¹ of QN) was transferred into a 10 mL volumetric flask, with 10 mL of acetonitrile, obtaining the final concentration of 20 μg.mL⁻¹. This flask was kept in an ultrasonic bath for 30 min. The solutions were filtered through a 0.45 μm membrane filter before injection.

VALIDATION OF THE METHOD

The developed chromatographic method was validated using quinine-loaded nanocapsules NC₁QN and NC₂QN with the label claim of 2 mg.mL⁻¹, by determination of specificity, linearity, precision, accuracy, robustness and system suitability, following ICH guidelines.

Linearity and sensitivity

Linearity was evaluated by constructing three calibration curves, each one with 7 concentration levels of QN (12, 13.5, 15, 16.5, 18, 21, 24 μg.mL⁻¹) on three different days. The results were tested by ANOVA and linear regression analysis was used to obtain the linear equation and correlation coefficient. The limits of

Fig 1: Chemical Structure of Quinine.
detection (LOD) and quantitation (LOQ) were calculated using the direct calibration line. The LOQ was calculated by multiplying the factor 10 for the intercept and dividing the value obtained by the slope of the average. The same procedure was used for the calculation of LOD, however the factor used was 3.3, according to the guidelines (ICH, 1996, ICH, 2003, ICH, 2005).

Precision

The intra-day precision was analyzed through the preparation of 6 samples of nanocapsules (NCQN and NC2QN) containing 20 μg.mL⁻¹ of QN, on the same day (n = 6). Inter-day precision was tested by repeating the same procedure on 3 different days (n = 6/day) and comparing the results for the different days. The precision data were expressed as relative standard deviation percentage (RSD%).

Accuracy

The accuracy of the method was evaluated by adding a known amount of QN at three concentrations (16, 20, 24 μg.mL⁻¹) to blank nanocapsules samples corresponding to 80, 100 and 120% of the nominal analytical concentration (20 μg.mL⁻¹). Each solution was prepared in triplicate and the concentrations and recoveries were calculated against the added concentration.

Robustness

Robustness of the proposed method was examined by evaluating the influence of small alterations of the most important procedure variables such as the ratio of mobile phase ACN: MeOH: water pH 3.0 (40:40:20 and 50:30:20), flow change (0.8 and 1.2ml min⁻¹) and pH (2.8 and 3.2). Analyses of nanocapsules containing 20 μg.mL⁻¹ QN were carried as the same form described above (item 2.5), in triplicate. Only one parameter in the experiments was changed at a time and the effects were studied based on RSD (%) values obtained among the parameters analyzed. In order to evaluate the robustness the values obtained after different tests were compared in relation to Rt (retention time), T (tailing factor ≤ 2.0), k (retention factor ≥ 2.0) and N (theoretical plate number ≥ 2000) according to the limits established by FDA (FDA, 1994).

Specificity

The specificity was performed by observing interferences from quinine-loaded nanocapsules excipients. The chromatograms of excipient placebo solution (without drug) and antimalarial solutions were compared to verify the probable interference of the excipients on the drug quantitation.

Nanocapsules applicability

Photodegradation was induced by exposing the samples to UV-A radiation (352 nm) for 8 h. The samples of free QN, NCQN and NC2QN were added in cuvettes (2 mL) inside the chamber (n = 3). In specific times, an aliquot of each sample was withdrawal for HPLC-PDA analysis. Samples were analyzed in comparison to the control sample (free QN) which was also subjected to degradation conditions. After each time degradation, all samples were submitted to dilution in acetonitrile to yield a final concentration of 20 μg.mL⁻¹ and filtration in a 0.45 μm membrane filter, before injection.

RESULTS AND DISCUSSION

The development and validation of the analytical method quinine-loaded nanocapsules allows a simple and rapid quantitative estimate. This novel method quantifies QN in different nanoparticle systems and uses photodiode array UV detection with optimal chromatographic conditions.

The nanocapsules have been characterized according to the diameter, pH and zeta potential. Both formulations have a diameter in the range between 150 and 200 nm and polydispersity -below 2 confirming the homogeneity of particle size distribution.

The pH of the formulations showed between 7 and 8 for both formulations because of the high basicity of quinine. The zeta potential indicates that the electrical potential of the particle surface was around -25 and +15 mV for NC1QN and NC2QN, respectively.

This difference is because of the cationic polymer Eudragit RS100®, giving positive charge to NC2QN and the polymer (PCL) and the surfactant (Lipoid S45®), responsible for the negative charge of NC1QN (Schaffazick et al., 2002, Mosqueira et al., 2001). These results are in agreement with Haas and co-workers (Haas et al., 2009).

The best chromatographic condition was achieved using a mobile phase consisting of acetonitrile and water 0.01% triethylamine (pH adjusted to 3.0 with phosphoric acid) (60:40, v/v), with a flow rate of 1.0 mL min⁻¹ and total run time of 08 minutes. QN produced a sharp and symmetric peak when chromatographed with these conditions.

A typical chromatogram of QN standard, NC1QN and NC2QN obtained by the proposed method is shown in Figure 2A, 2B and 2C, respectively. PDA detector enables the analysis of a drug at different wavelengths in a single analysis, as well as to verify peak purity during analysis, so we chose to use the wavelengths of maximum absorption for QN (232 nm) in order to obtain the maximum area for each peak. The retention time for quinine was 06 minutes.

QN linearity was evaluated in the concentration range of 12-24 μg.mL⁻¹. The calibration curves constructed for QN were found to be linear and the equation obtained was y = 103.540,2232x + 68.439,8428, where y is the peak area ratio of QN and x is the concentration of QN in μg.mL⁻¹. The correlation coefficient was 0.9995.

The validity of the assay was verified by means of analysis of variance (ANOVA), which demonstrated that the regression equation was linear (F recalculated = 1.05.10² > F critical = 4.96; α = 0.05) with no deviation from linearity (F recalculated = 1.10.10² < F critical = 3.33; α = 0.05). The LOD and LOQ were estimated to be 2.29 and 6.94 μg.mL⁻¹, respectively, indicating suitable sensitivity of the method.
The repeatability of the method was determined by the RSD for six determinations of QN performed on the same day and under the same experimental conditions (intra-day). The inter-day precision was assessed by analyzing six samples on three different days. These results are given in Table I. The low RSD (%) was obtained for the intra-day (< 1.0 %) and inter-day precision (0.875% for Nc1QN and 0.629% for Nc2QN). The Nc1QN showed a slightly label claim concentration higher than Nc2QN, but different particulate systems had a lower RSD% in inter-day precision and in intra-day accuracy, confirming good precision of the quinine-loaded nanocapsules method. The accuracy was calculated as the percentage of recovery by the assay of adding a known amount of quinine at three concentrations to blank nanocapsules. The accuracy of the method ranged from 98 to 99.6 % to Nc1 and from 97 to 97.8% to Nc2, with RSD lower than 2.0%. The recovery of almost all the drug in the sample in three different (high, medium and low) concentrations with a low RSD % indicates that the assay is accurate (Table II).

Robustness of the proposed analytical method was evaluated by changes in the chromatographic conditions as flow rate, mobile phase composition and pH. The samples of Nc1QN and Nc2QN were performed in triplicate and injected for each of the changes and system suitability parameters evaluated.
The results were satisfactory in terms of the content of the drug, with recoveries ranging from 97.3 to 103.8%. The robustness of the method was assessed by evaluating the impact of changes in significant variables such as pH, mobile phase composition, and flow rate on the retention factor and theoretical plate number. All conditions evaluated resulted in small changes in the retention time, tailing factor, and theoretical plate number, indicating the robustness of the method.

The photostability assessment demonstrated that the quinine loaded HPLC assay was specific for the analysis of quinine. In photodegradation studies after 8 hours of exposure to UV-A light, quinine standard had a degradation of 27.11 ± 0.218%. However, the nanocapsules had a degradation of 11.92 ± 0.508% and 13.34 ± 0.628% for Nc$_1$QN and Nc$_2$QN, respectively. Even after 8 hours of exposure to UV-A light, there was no formation of degradation products for both the standard and the nanocapsules, but only a decrease in the content of QN.

Through these results, it is clear that the nanoencapsulation of QN protects the drug from degradation by exposure to UV-A light. This indicates that the tested nanocapsules are alternative systems that protect sensitive drugs to light degradation. However, the nanocapsules samples had a degradation of 11.92 ± 0.508% and 13.34 ± 0.628% for Nc$_1$QN and Nc$_2$QN, respectively. Even after 8 hours of exposure to UV-A light, there was no formation of degradation products for both the standard and the nanocapsules, but only a decrease in the content of QN.

Through these results, it is clear that the nanoencapsulation of QN protects the drug from degradation by exposure to UV-A light. This indicates that the tested nanocapsules are alternative systems that protect sensitive drugs to light degradation. However, the nanocapsules samples had a degradation of 11.92 ± 0.508% and 13.34 ± 0.628% for Nc$_1$QN and Nc$_2$QN, respectively. Even after 8 hours of exposure to UV-A light, there was no formation of degradation products for both the standard and the nanocapsules, but only a decrease in the content of QN.

Through these results, it is clear that the nanoencapsulation of QN protects the drug from degradation by exposure to UV-A light. This indicates that the tested nanocapsules are alternative systems that protect sensitive drugs to light degradation. However, the nanocapsules samples had a degradation of 11.92 ± 0.508% and 13.34 ± 0.628% for Nc$_1$QN and Nc$_2$QN, respectively. Even after 8 hours of exposure to UV-A light, there was no formation of degradation products for both the standard and the nanocapsules, but only a decrease in the content of QN.

Through these results, it is clear that the nanoencapsulation of QN protects the drug from degradation by exposure to UV-A light. This indicates that the tested nanocapsules are alternative systems that protect sensitive drugs to light degradation. However, the nanocapsules samples had a degradation of 11.92 ± 0.508% and 13.34 ± 0.628% for Nc$_1$QN and Nc$_2$QN, respectively. Even after 8 hours of exposure to UV-A light, there was no formation of degradation products for both the standard and the nanocapsules, but only a decrease in the content of QN.

Through these results, it is clear that the nanoencapsulation of QN protects the drug from degradation by exposure to UV-A light. This indicates that the tested nanocapsules are alternative systems that protect sensitive drugs to light degradation. However, the nanocapsules samples had a degradation of 11.92 ± 0.508% and 13.34 ± 0.628% for Nc$_1$QN and Nc$_2$QN, respectively. Even after 8 hours of exposure to UV-A light, there was no formation of degradation products for both the standard and the nanocapsules, but only a decrease in the content of QN.
CONCLUSION

The proposed HPLC method was developed and validated. It allows a simple and fast quantitative estimation of QN in innovative nanoparticulate systems using PDA detection. This system has a high absorbance and allows a greater selectivity due to the choice of wavelength and hence has a higher sensitivity and a lower cost, which makes it more usual.

This method can be employed conveniently with reliability and success for the estimation of QN in routine quality control and stability studies. Furthermore, according to the photodegradation testing, it was proved that the proposed nanocapsules-quinine loaded offer protection to QN degradation to light.

ACKNOWLEDGMENTS

This study was supported by the Brazilian agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

REFERENCES

Argenton A. 2010. Conceitos fundamentais de Cromatografia líquida de Alto Desempenho (HPLC). Conselho Regional de Química - IV Região (SP) [in Portuguese].

De Oliveira ARM. Quinina: 470 anos de história, controvérsias e desenvolvimento. Química Nova, 2009, 32:5 [in Portuguese].

