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Seventy-two yeasts were isolated from sugarcane juices and sugar process-sediments collected in Thailand by 
incubated at 30 and 40oC in oxygen-limited condition. Six and eleven isolated yeasts produced ethanol with 0.46 
and 0.22 g/g initial glucose at 30 and 40oC, respectively. The highest ethanol production efficacy, 0.30 g/g 
glucose of maximum ethanol yield at 40oC was found in isolates G1-4(1) and G1-12(3). On the basis of their 
phenotypic characteristics including the D1/D2 region of the large-subunit ribosomal (LSU) of 26S rRNA gene 
sequence analysis, the isolates G1-4(1) and G1-12(3) were identified as Pichia kudriavzvii and Torulaspora 
globosa, respectively.  
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INTRODUCTION 
 

Due to the world energy crisis and global warming 
problem, bio-ethanol which is renewable and green energy become 
more interesting. To make ethanol production cost competitive 
with gasoline, the use of lignocellulose which is abundant and low 
cost as raw material was extensive studied. Lignocellulose consists 
of 3 major components; cellulose, hemicellulose and lignin. 
Hydrolysis of the cellulose results in mainly glucose, a 
fermentable sugar. Because the cellulose component in ligno-
cellulose is wrapped by hemicellulose and lignin. Therefore, 
ethanol production from lignocellulosic substrate is composed of 
three main steps; 1) Pretreatment: to unshield cellulose from 
hemicellulose and lignin, help cellulose to be more accessible to 
cellulase (Palonen et al., 2004; Prasad et al., 2007), convert 
crystalline cellulose to amorphous cellulose which is easier to be 
hydrolyzed by cellulose. 2) Saccharification (cellulose hydrolysis): 
to hydrolyze cellulose to glucose. Complete hydrolysis of cellulose 
is conducted by three types of enzymes (endoglucanase, exogluca-                 
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nase and -glucosidase) which work synergism (Turner et al., 
2007). The synergistic action is controlled by end product inhibition 
resulted in the decrease of final end product, glucose (Béguin, 
1990). 3) Fermentation: resultant glucose from the saccharification 
step is fermented to ethanol by microorganism (Zheng et al., 2009). 
Simultaneous saccharification and fermentation (SSF) is an ethanol 
fermentation process developed to solve the problem of end product 
inhibition of cellulose hydrolysis by immediately ferment glucose 
liberated from cellulose to ethanol. Advantage of the SSF process 
are reduction of fermentation time, contamination and production 
cost (Wingren et al., 2003; Saha et al., 2011). However, in the SSF 
process neither the cellulose hydrolysis nor ethanol fermentation is 
operated at its optimal condition due to difference in optimal 
temperature. Raising of optimal fermentation temperature closer to 
optimal temperature for cellulase activity (50oC), by using 
thermotolerant ethanol fermenting yeasts is a method to improve 
lignocellulosic ethanol yield produced by the SSF process.  

This study deals with isolation and screening of high 
efficient ethanol fermenting yeasts. The yeasts selected were 
identified based on phenotypic characteristics, biochemical tests 
and including D1/D2 region of the large-subunit ribosomal of 26S 
rRNA gene sequence analysis. 

  



 Jutakanoke et al. / Journal of Applied Pharmaceutical Science 4 (04); 2014: 052-056                                             053 
 

MATERIALS AND METHODS  
Samples and yeast isolation  

Twenty eight samples of sugarcane juice and sugar 
producing process-sediment were collected from sugar factory 
(Rajbury Sugar Co., Ltd.), Thailand. One g or 1 mL of the sample 
was inoculated into 5 mL of isolation medium (glucose 1%, yeast 
extract 0.3%, peptone 0.3%, chloramphenical 0.01% (w/v), and 
ethanol 3% (w/v), pH 5.0) (Laopaiboon et al., 2009) in 16 x 150 
mm test tube and incubated at 30oC and 40oC, oxygen-limited 
condition for 7 days.  Obtained cultures were purified by streak 
plate method using YPD agar medium (glucose 10%, yeast extract 
0.3%, peptone 0.3% and agar 2% (w/v), pH 5.0) and incubated at 
30oC and 40oC, oxygen-limited condition for 7 days. Oxygen- 
limited condition was performed by Candle jar method (Kumar, 
2012). Resultant cultures were kept on YPD agar slant at 4oC. 

 
Screening for ethanol fermenting yeast 

Single colony of the isolated yeasts grown on YPD agar 
medium at 30oC or 40oC for 48 h was inoculated into 50 mL of 
fermentation medium (glucose 15%, yeast extract 0.6%, and 
peptone 0.9% (w/v), pH 5.0) in 250 mL Erlenmeyer flask and 
incubated at 30oC or 40oC, 200 rpm for 24 h. The culture 
transferred at 1% (v/v) to 50 mL of fresh fermentation medium in 
250 mL Erlenmeyer flask and incubated at the same condition was 
used as inoculum.  

The inoculum was inoculated at 10% (v/v) to 
fermentation medium (42.5 mL in 50 mL Erlenmeyer flask) and 
incubated at 30oC or 40oC, oxygen-limited condition for 48 h. 
Resultant culture were centrifuged at 4 oC, 12,000 rpm, for 5 min. 
Supernatants were analyzed for ethanol concentration by gas 
chromatography (Hewlett-Packard, HP 5890 Series, USA) with 
Porapak QS (Cabowax 20M) column (2m x 0.32m) at a 
temperature of 175 oC and a flame ionization detector (FID) at   
150 oC. Helium, with a flow rate of 35 mL/min, was used as carrier 
gas (Jutakanoke et al., 2012). 
 
Identification Methods 
 

Phenotypic characterization 
 Vegetative cell, ascospore and colony morphologies of 
the isolated yeasts grown on YM agar and 5% malt extract agar 
were observed and compared with type strain as described in The 
Yeast: a taxonomic study, 4th ed (Kurtzman and Fell, 1998). For 
pseudohyphae detection, the Calmau plate culture method with 
corn meal agar  was used (Kurtzman and Fell, 1998). Carbon 
assimilation test was performed by API kit ID 32 C (Biomerieux 
SA, France). Two days old cells suspended in ultra-pure                      
water to final 2 McF (250 µl) were inoculated  into                             
C-medium, then transferred (135 µl) into well and incubated                  
at 29±2 oC. Cell   turbidity   was   monitored after 24, 48 and 72 h. 
 
26S rDNA (D1/D2) sequencing and phylogenetic analysis 

Yeast DNA was extracted by method of Manitis et al. 
(1982). D1/D2 domain of 26S rDNA was amplified by Polymerase  
Chain Reaction (PCR) and used F63 (5´-GCA TAT CAA TAA 
GCG GAG GAA AAG-3´) and LR3 (5´ GGT CCG TGT TTC 

AAG ACG-3´) as primers (Kurtzman and Robnett, 1998). 
Amplicon purified by Gel/PCR DNA Fragment Extraction Kit 
(Geneaid Biotech Ltd., Taipei, Taiwan) was directly sequenced by 
ABI PrismTM BigDyeTM Terminator Cycle sequence Ready 
Reaction Kit (Applied Biosystems, Stafford, USA) according to 
manufacturer’s instruction. The resultant sequence was compared 
by BLASTn Homology Search (http://www.ncbi.nlm.nih.gov/ 
blast). Generated sequence was aligned with 26S rDNA (D1/D2) 
sequence of related species using CLUSTAL X version 1.8 
programs (Thompson et al., 1997). Phylogenetic tree was 
constructed from evolutionary distance data according to Kimura 
(1980) by the neighbor-joining method (Saitou and Nei, 1987). 
Bootstrap analysis (Felsenstien, 1985) was performed from 1,000 
random re-samplings. 
 
RESULTS AND DISCUSSION 
 

Isolation and screening of ethanol fermenting yeast 
A total of 72 yeasts, 35 strains  were isolated at  30oC and 

37 strains were isolated at 40oC. All isolates could ferment glucose 
to ethanol. Six yeasts isolated at 30 °C were found to produce 
ethanol at 30 °C higher than 0.46 g/g glucose whereas ten yeasts 
isolated at 40 °C could produce ethanol at 40°C higher than 0.22 
g/g glucose (Figure 3). Saccharomyces cerevisiae TISTR 5596, a 
high ethanol producing control strain, produced ethanol 0.46 and 
0.22 g/g glucose, at 30 oC and 40 oC, respectively. Isolates, G1-
4(1) and G1-12(3), which produced the highest ethanol (0.30 g/g 
glucose) at 40oC were further identified. 
 

 
A                                               B 

Fig. 1: Colonial appearance of isolates G1-4(1) (A) and G1-12(3) (B) on 5% 
malt extract agar after 3 days at 25oC. 
 
Identification of isolates G1-4(1) and G1-12(3) 

Morphological characteristics and biochemical tests of 
the 2 highest ethanol producing yeasts, G1-4(1) and G1-12(3) were 
examined.  The isolate G1-4(1) formed butyrous and light-cream 
colored colonies (Figure 1) on 5% malt extract agar after 3 days at 
25 oC. Cells are ovoid to elongate, and occur singly or in pairs. 
This strain showed similar assimilation results to the type strain of 
Pichia kudriavzevii except for glucosamine assimilation (Table 1). 
D1/D2 LSU sequence analysis showed 99% similarity to Pichia 
kudriavzevii Y-5396T (Figure 2). Therefore, isolate G1-4(1) was 
identified as Pichia kudriavzevii (Kurtzman et al., 2011). The 
isolate G1-12(3) formed butyrous, dull to glistening, and tannish-
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 Torulaspora globosa Y-12650T 
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 Saccharomyces cerevisiae Y-12632T
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 Zygosaccharomyces rouxii Y-229T
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 Cyniclomyces guttulatus Y-17561T
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white colored colonies (Figure 1) on 5% malt extract agar after 3 
days at 25 oC. Cells are spherical to ovoid, and occur singly or in 
pairs. It showed the same assimilation as the type strain of 
Torulaspora globosa (Kurtzman et al., 2011) (Table 1). The D1/D2 
LSU sequence analysis showed 99% similarity with Torulaspora 
globosa Y-126T (Figure 2). Pairwise comparison of 573 
nucleotides with T. globosa Y-126T, 1 nucleotide (nt) substitution 
was found. Therefore, isolate G1-12(3) was identified as 
Torulaspora globosa (Kurtzman et al., 2011). Recently, ethanol 
production from alkali-treated rice straw via simultaneous 
saccharification and fermentation of newly  isolated thermotolerant 
Pichia kudriavzevii HOP-1 was reported. It produced maximum 
ethanol 0.42 g/g glucan or 0.24 g/g biomass at 40 oC after 24 h 
(Oberoi et al., 2012). Yuangsaard et al. (2013) reported that newly       
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

isolated thermotolerant Pichia kudriavzevii could produce 
maximum ethanol (0.43 g/g glucose) from cassava starch 
hydrolysate at 40 oC within 24 h. The higher ethanol  yield 
reported compared to this work might be a result of well controlled 
fermentation conditions, pH and temperature including agitation 
along the whole process, of Oberoi et al. (2012), and 
supplementation of nutrients (NH4)2SO4 0.05%, yeast extract 
0.09%, KH2PO4 0.05%, MgSO4.7H2O 0.05% (w/v)) in the ferment 
of Yuangsaard et al. (2013). Ethanol production by Torulaspora 
globosa at 40oC was reported by Ngo Thi Phuong et al. (2010). 
Maximum ethanol produced was 0.26 g/g glucose which was 
lower than this study (0.30 g/g glucose). The result indicated 
Torulaspora globosa, G1-12(3), was a high efficient thermo-
tolerant ethanol fermentating yeast.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Phylogenetic tree constructed by the neighbor-joining method based on D1/D2 domain of LSU  rRNA gene sequences indicates position of isolates      
G1-4(1) and G1-12(3). 
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CONCLUSIONS 
 

 Six and eleven high efficient ethanol fermenting yeasts 
were successfully isolated at 30oC and 40oC, respectively. Isolate 
G1-4(1) and G1-12(3) which produced the highest ethanol (0.30 
g/g glucose) at 40 oC after 48 h were identified as Pichia 
kudriavzvii and Torulaspora globosa, respectively based on 
phenotypic characterization and D1/D2 region of large-subunit 
ribosomal (LSU) of 26S rRNA gene sequence analysis. The 
Torulaspora globosa, G1-12(3),  showed higher ethanol producing              
efficiency than those of previously Torulaspora globosa    
reported.   
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