Phytochemical and antimicrobial screening of crude methanolic leaf extract of Peucedanum winkleri H. Wolff.

Madumelu M1*, Ndukwe IG2 and Ayo RG3
1Department of Chemistry, Federal College of Education, Zaria Nigeria.
2Department of Chemistry, Ahmadu Bello University, Zaria Nigeria.
3College of Agriculture Samaru, Ahmadu Bello University, Zaria Nigeria.

ARTICLE INFO
Article history:
Received on: 24/09/2013
Accepted on: 07/11/2013
Available online: 31/12/2013

Key words: Phytochemical investigation, Peucedanum winkleri, minimum inhibitory concentration (MIC), minimum bactericidal/ fungicidal concentration (MBC/MFC).

ABSTRACT
Phytochemical investigation of the leaves of Peucedanum winkleri H. Wolff, revealed the presence of secondary metabolites. The extract from total extraction with methanol was screened for its antimicrobial activity against Staphylococcus aureus, Methicillin resistant Staphylococcus aureus, Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pyogenes, Proteus mirabilis, Candida albicans and Candida krusei using agar-well diffusion method. The result indicated that the extract inhibited the growth of one or more test pathogens and were comparable with those of the standard drugs used. The minimum inhibitory concentration (MIC) ranges from 5-10 mg/ml and the minimum bactericidal/ fungicidal concentration (MBC/MFC) ranges from 20-40 mg/ml. The result of the study shows justification for the use of the plant for the treatment of infectious diseases caused by these bacteria and fungi pathogens. It was concluded that P. winkleri H. Wolff could be a potential source of active antimicrobial agents and a detailed assessment of antimicrobial activity of the plant material in other solvents extract, isolation and characterization of active compounds from the most active extract is on-going.

INTRODUCTION
Historically, plants have provided a source of inspiration for novel drug compounds, as plant derived medicines have made large contribution to human health and well-being (Iginosa et al., 2009). Nearly 80% of the world population relies on traditional medicine for primary health care most of which are plant extract (WHO, 2002; Akindele and Adeyemi, 2007a). Of about 300,000 plants species acclaimed world-wide, only about 5% have been investigated scientifically for their medicinal properties (Sanusi and Rabo, 2004).

Peucedanum winkleri H. Wolff belongs to the family of Apiaceae. Alternative name is Umbelliferae. It is an annual herb that is widely spread in Asia, Europe and Tropical Africa including Nigeria. In northern part of Nigeria, it is useful among local medicine practitioners for the treatment of typhoid fever, high fever, intestinal disorder and as an analgesic. Prior to now, there is no phytochemical and antimicrobial report on this plant species. Many efforts have been made to discover new antimicrobial compounds from various sources including plants that could be used as a remedy for a variety of ailments of microbial origin. In this present study, the extract from total extraction of leaves of P. winkleri H. Wolff using methanol was screened for phytochemical constituent and antimicrobial properties against Staphylococcus aureus, Methicillin resistant Staphylococcus aureus, Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pyogenes, Proteus mirabilis, Candida albicans and Candida krusei. as part of the exploration for new and novel bio-active compounds.

MATERIALS AND METHODS
The leaves of P. winkleri was collected fresh from Shika village in Zaria, Kaduna state of Nigeria. Plant materials were identified at the herbarium unit of Biological Science Department, Ahmadu Bello University Zaria, Nigeria and a voucher specimen number was deposited in the herbarium.  

* Corresponding Author
Madumelu Mark. +2348034641173. E-mail: maksyno@yahoo.com

© 2013 Madumelu M et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlike Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Preparation of plant extract
The plant materials were dried at room temperature and then pulverized. The pulverized sample 300 g was packed into a thimble in a soxhlet extractor and extracted exhaustively using methanol. The resulting extract was concentrated at 40 °C in vacuo using rotary evaporator and further air dried to a constant weight of 41.8 g (13.93 %).

Phytochemical screening
The extract was subjected to phytochemical test for plant secondary metabolites using standard methods described by Trease and Evans, 1989 and Soforawo, 1993.

Test organisms
Microbial strains of pathogens tested includes Staphylococcus aureus, Methicillin resistant Staphylococcus aureus, Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pyogenes, Proteus mirabilis, Candida albicans and Candida krusei. The pure isolates of these microorganisms were obtained from the Department of Medical microbiology Ahmadu Bello University Teaching Hospital Zaria Nigeria.

Media used
Muller- Hinton Agar and Sabouraud dextrose agar (SDA) were used to test for antibacterial and antifungal respectively.

Antimicrobial activity
The antimicrobial activity of the crude methanolic extract of P. winkleri was determined by agar-well diffusion method using some pathogens. Their clinical isolates were checked for purity and maintained in slants of agar for the bacteria and in slant of SDA for the fungi.

The medium was prepared according to the manufacturer’s instruction, sterilized at 121 °C for 15 mins, poured into sterile petri dishes and were allowed to cool and solidify. The sterilized medium was then seeded with 0.1ml of the standard inoculum of the test microbes, the inoculum was spread evenly over the surface of the medium by the use of sterile swab. Using a standard cork borer of 6 mm in diameter, a well was cut at the centre of each inoculated medium. 0.1ml of 40 mg/ml solution of the extract was then introduced into each well on the inoculated medium.

The inoculated medium was incubated at 37 °C for 24 h after which each of the plate was observed for the zone of inhibition of growth, measured and recorded in mm.

Minimum inhibition concentration (MIC)
The MIC of the extract was carried out using broth dilution method. Muller –Hinton broth was prepared according to manufacturer’s instructions. 10 ml was dispensed into test tubes and sterilized at 121 °C for 15 mins, the broth was allowed to cool. MCFarland’s standard turbidity scale number 0.5 was prepared to give turbid solution. Normal saline was prepared, 10 ml was dispensed into sterile test tube and the test microbe was inoculated and incubated at 37 °C for 6 h. Dilution of the test microbes in the normal saline was done until the turbidity matched that of Mc Farland’s scale by visual comparison. At this point, the test microbes has a concentration of about 1.5x10⁸ cfu/ml.

Two fold serial dilution of the extract in the broth was made to obtain concentrations of 40 mg/ml, 20 mg/ml, 10 mg/ml, 5 mg/ml and 2.5 mg/ml. 0.1ml of the standard inoculum of the test microbes in the normal saline was then inoculated into the different concentrations of the extract in the broth, incubation was made at 37 °C for 24 h after which each test tube was observed for turbidity (growth). The lowest concentration of the extract in the broth which shows no turbidity was recorded as the MIC.

Minimum bactericidal/fungicidal concentration (MBC/MFC)
MBC/MFC was carried out to check whether the test microbes were killed or only their growth was inhibited. Muller-Hinton agar was prepared and sterilized at 121 °C for 15 mins, the medium was poured into sterile petri dishes and was allowed to cool and solidify.

The content of the MIC in the serial dilution were then subcultured onto the prepared medium, incubation was made at 37 °C for 24 h, after which each plate was observed for colony growth. The lowest concentration of the extract without a colony growth was recorded as the MBC/MFC.

RESULT
The result of the antimicrobial test, MIC and MBC/MFC of the extract are presented in table 1 and 2.

DISCUSSION
The antimicrobial activity of crude methanolic extract shows relevant antimicrobial activity and comparable with those of the standard drugs used. It zone of inhibition was between 20-29 mm. Klebsiella pneumoniae had the highest zone of inhibition whereas Salmonella typhis and Candida albicans had the lowest as shown in table 1.

From table 2, the MIC of the extract ranged between 5-10 mg/ml with Klebsiella pneumoniae having the least MIC value of 5 mg/ml compare to other microorganisms with MIC value of 10 mg/ml. Also, the MBC/MFC ranged between 20-40 mg/ml with Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae having an MBC value of 20 mg/ml, impliedly meaning that these microorganisms can be exterminated at a lower concentration compared to others with higher MBC/MFC of 40 mg/ml.

The inhibitory effect of the extract of P. winkleri against several bacterial and fungal species is an indication of broad spectrum antimicrobial potential thus, introducing the plant as a potential candidate for drug development for the treatment of infectious diseases caused by these pathogens.
These compounds are claimed to have antiviral and antitumour properties. Tanins and saponins have been reported to have various uses such as antiulcerogenic, anti-inflammatory, fibrinolytic, antipyretic, analgesic and anti edematous inflammatory properties. Flavanoids have many health promoting benefits. They act as antihistamine. Flavanoids have been reported to exhibit a wide range of biological activities like antimicrobial, antiinflammatory, antiangiogenic, analgesic, anti-allergic, cytostatic and antioxidant properties. Tanins is another constituent of P. winkleri, a secondary metabolite. Okwu (2001) reported the relationship of steroidal compounds with various anabolic hormones including sex hormones. Steroids has equally been reported to have antiviral activity (Quinlan et al., 2001) and confirmed to have antiviral properties (Neumann et al., 2004).

CONCLUSION

The result of the experiment showed that the leaf of P. winkleri H. Wolff could be a potential source of active antimicrobial agents and a detailed assessment of antimicrobial activity of the plant material in other solvents extract, isolation and characterization of active compounds from the most active extract is on-going.

**REFERENCES**


---

**Table 1:** Zone of inhibition (mm) of crude methanol extract of leaves of *P. Winkleri*.

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Crude Methanol extract 40 mg/ml</th>
<th>Cefuroxine 40 µg/ml</th>
<th>Sparfloxacin 40 µg/ml</th>
<th>Erythromycin 50 µg/ml</th>
<th>Fluconazole 50 µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Staphylococcus aureus</em></td>
<td>24</td>
<td>22</td>
<td>36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Methicillin resistance <em>S. aureus</em></td>
<td>23</td>
<td>30</td>
<td>34</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>0</td>
<td>30</td>
<td>30</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td><em>E. coli</em></td>
<td>27</td>
<td>30</td>
<td>35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><em>Salmonella typhi</em></td>
<td>22</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><em>Proteus mirabilis</em></td>
<td>20</td>
<td>0</td>
<td>27</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td><em>Pseudomonas aeruginosa</em></td>
<td>0</td>
<td>0</td>
<td>39</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td><em>Klebsiella pneumoniae</em></td>
<td>29</td>
<td>40</td>
<td>47</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td><em>Candida albicans</em></td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td><em>Candida krusei</em></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34</td>
</tr>
</tbody>
</table>

**Table 2:** The MIC and MBC/MFC of crude methanol extract of leaves of *P. Winkleri*.

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>MIC (mg/ml)</th>
<th>MBC/MFC (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Staphylococcus aureus</em></td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Methicillin resistance <em>S. aureus</em></td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td><em>Escherichia coli</em></td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td><em>Salmonella typhi</em></td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td><em>Proteus mirabilis</em></td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td><em>Klebsiella pneumoniae</em></td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td><em>Candida albicans</em></td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>


---

**How to cite this article:**