In vitro antiviral and antimicrobial activities of Spirulina platensis extract

El-Baz, F.K.1; El-Senousy, W.M.2; El-Sayed, A.B.3; Kamel, M.M.4
1Plant Biochemistry Department, National Research Centre, (NRC), Dokki, Cairo, Egypt. 2Virology lab., Water Pollution Research Department, (NRC). 3Algal Biotechnology Unit, (NRC). 4Bacteriology lab., Water Pollution Research Department, (NRC).

INTRODUCTION

Early interest in Spirulina was focused mainly on its potential as a source of protein, vitamins, especially vitamin B12 and provitamin A (β-carotene), and essential fatty acids like γ-linolenic acid (GLA). Recently more attention has been given to study its therapeutic effects, which include reduction of cholesterol and nephrotoxicity by heavy metals, anticancer properties, protection against radiation, and enhancement of the immune system (Belay et al., 1994). Spirulina also possesses other biological functions such as antiviral, antibacterial, antifungal, and antiparasite activities (Khan et al., 2005). Cyanobacteria or blue–green algae are photoautotrophic microorganisms largely distributed in nature. Some of them have been used as human food for many years because of their high protein content (35–65%) and nutritional value. Arthrospera (Spirulina) is the best known genus and it was consumed by the Aztecs in Mexico Valley and by the Chaad lake population in Africa. At present, some countries are culturing it on a large scale (Steven and Russell, 1993). Over 100 enteric viruses species cause a wide variety of illnesses in man. These include hepatitis (e.g. Hepatitis A and E), gastroenteritis (e.g. Rotavirus, astrovirus, norovirus, and enteric adenoviruses type 40 and 41), meningitis, fever, rash, (e.g. coxsackieviruses group A and B) conjunctivitis (e.g. coxsackievirus group A) myocarditis and may be diabetes (e.g. coxsackievirus group B) (Bosch, 1998). Enteric viruses are shed in extremely high numbers in the feces of infected individuals; patients suffering from diarrhea or hepatitis may excrete from 10^10 to 10^11 virus particles per gram of stool (Atmar et al., 2008, Costafreda et al.,2006, El-Senousy et al., 2013). Current wastewater treatments do not ensure complete virus removal and their transmission is through contaminated food or water (Blatchley et al., 2007, Bosch, 2007, Ghazy et al., 2008, El-Senousy et al.,2013). Also, Pathogenic bacteria contribute to other globally important diseases, such as pneumonia, which can be caused by bacteria such as Streptococcus and Pseudomonas, and foodborne illnesses, which can be caused by bacteria such as Shigella, Campylobacter, and Salmonella. Pathogenic bacteria also cause infections such as tetanus, typhoid fever, diphtheria, syphilis, and leprosy (Fisher et al., 2007).

ARTICLE INFO

Article history:
Received on: 26/10/2013
Revised on: 12/11/2013
Accepted on: 05/12/2013
Available online: 30/12/2013

Key words: antiviral, antibacterial, Spirulina platensis, rotavirus, adenovirus, astrovirus.

ABSTRACT

Spirulina platensis are filamentous, undifferentiated, non-toxigenic cyanobacteria that have been used as food since ancient times. There have been numerous studies on its antioxidant and antimicrobial actions. In this study antibacterial and antiviral effect of ethanol extract of Spirulina platensis were tested. The reduction of infectious viral units after treatment with ethanol extract of Spirulina platensis was tested. Non toxic doses of Spirulina platensis revealed 53.3%, 66.7%, 76.7%, 56.7%, and 50% reductions in vitro for infectious units of adenovirus type 7, Coxsackievirus B4, astrovirus type 1, rotavirus Wa strain, and adenovirus type 40 respectively. Using disc diffusion method to show the antibacterial effect of ethanol extract of Spirulina platensis against different bacterial strains (Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Enterococcus faecalis) in addition to Candida albicans, inhibition zones were observed with Enterococcus faecalis and Candida albicans.
In recent years, the pharmaceutical industry focusing on the discovery of new bioactive compounds as antiviral agents and the main focus in recent decades for pharmaceutical discovery from natural products has been on microbial sources (bacterial and fungal), dating back to the discovery of penicillin from the mould fungus Penicillium notatum in the first half of the twentieth century (Abdo et al., 2012). Till now, there is not any drug for enteric viruses worldwide. In Egypt, Several studies for testing the antiviral effect of synthetic compounds and natural compounds were done (Ibrahim et al., 2007, Esawy et al., 2011, Bassiony et al., 2012, Hamdy and El-Senousy, 2013, Hamdy et al., 2013, and Salem et al., 2013) with some promising compounds. The aim of this study is to examine the antiviral and antibacterial activity of the ethanol extract of Spirulina platensis.

MATERIALS AND METHODS

Collection of Spirulina platensis samples

The algal materials were grown in the algal biotechnology unit, National Research Centre (NRC), Dokki-Cairo, Egypt. Zarrouk media was used for growing Spirulina platensis as was reported by Zarrouk, (1966), and Raoof et al., (2006).

Extraction of Spirulina platensis

After collection, Spirulina platensis samples were washed with fresh water several times to remove salts and debris, air dried. 500 grams of the powdered samples were macerated and mixed with 2000 ml of 95% ethanol until such time all materials were submerged and allowed to stand for 24 hours with occasional shaking in a dark condition. After 24 hours, it was filtered. The crude residue was soaked again in fresh 95% ethanol for another 48 hours. The filtrate from the first and second soaking was then mixed together. The combined filtrates were concentrated using rotary evaporator at 50°C. The resulting concentrated extract was further concentrated by the use of a vacuum oven to remove residual solvent (Fayzunnessa et al., 2011).

Cytotoxicity test

It was done according to Simoes, et al., (1999) and Walum, et al., (1990). Briefly, the sample (100 mg) was dissolved in 1 ml of EtOH. Decontamination of samples was done by adding 24 μL of 100X of antibiotic-antimycotic mixture to 1 ml of the sample. Then, bi-fold dilutions were done to 100 μl of original dissolved sample and 100 μl of each dilutions were inoculated in Hep-2, BGM, MA104 cell lines (obtained from the Holding Company for Biological Products & Vaccines VACSERA, Egypt) and CaCo-2 cell line, (obtained from Prof.Dr.Albert Bosch, University of Barcelona, Spain) previously cultured in 96 multi well plates (Greiner-Bio one, Germany) to estimate the non toxic dose of the tested sample. Cytotoxicity assay was done using cell morphology evaluation by inverted light microscope and cell viability test applying trypan blue dye exclusion method.

Cell morphology evaluation by inverted light microscopy

Hep-2, BGM, MA104, and CaCo-2 cell cultures (2x10^5 cells/ml) were prepared separately in 96- well tissue culture plates (Greiner-Bio one, Germany). After 24 h incubation at 37°C in a humidified 5% (v/v) CO₂ atmosphere cell monolayers were confluent, the medium was removed from each well and replenished with 100 μl of bi-fold dilutions of the sample tested prepared in DMEM (GIBCO BRL). For cell controls 100 μl of DMEM without samples was added. All cultures were incubated at 37°C in a humidified 5% (v/v) CO₂ atmosphere for 72 h. Cell morphology was observed daily for microscopically detectable morphological alterations, such as loss of confluence, cell rounding and shrinking, and cytoplasm granulation and vacuolization. Morphological changes were scored (Simoes et al., 1999).

Cell viability assay

It was done by trypan blue dye exclusion method (Walum et al.,1990). Hep-2, BGM, MA104, and CaCo-2 cell cultures (2x10^5 cells/ml) were grown in 12-well tissue culture plates (Greiner-Bio one, Germany). After 24 h incubation, the same assay described above for tested sample was followed by applying 100 μl of tested sample dilutions (bi-fold dilutions) per well. After 72 h the medium was removed, cells were trypsinized and an equal volume of 0.4% (w/v) trypan blue dye aqueous solution was added to cell suspension. Viable cells were counted under the phase contrast microscope.

Determination of adenovirus type 7, Coxsackievirus B4, rotavirus Wa strain Titers Using plaque assay

Non toxic dilutions were mixed (100 μl) with 100 μl of different doses of adenovirus type 7 Coxsackievirus B4, and rotavirus Wa strain (1X10^5, 1X10^6, 1X10^7) Plaque-Forming Units per millilitre (PFU/ml). The infectivity of the rotavirus stocks was activated with 10 μg/ml trypsin for 30 min at 37°C. The mixture was incubated for 1/2 hr in 37°C. The inoculation of (100 μl) 10 fold dilutions of treated and untreated Adenovirus type 7, Coxsackievirus B4, and rotavirus Wa strain was carried out separately into Hep 2, BGM, and MA104 cell lines for adenovirus type 7 Coxsackievirus B4, and rotavirus Wa strain respectively in 12 multi well- plates. After 1 hr of incubation for adsorption at 37°C in a 5% CO₂-water vapor atmosphere without constant rocking. The plates were rocked intermittently to keep the cells from drying. After adsorption, 1 ml of 2X media (Dulbecco’s Modified Eagle Medium, Gibco- BRL (DMEM) plus 1ml 1% agarose was added to each well. 0.5 μg/ml trypsin was added to the media-agarose mixture in the case of rotavirus Wa strain and the plates were incubated at 37°C in a 5% CO₂-water vapor atmosphere. After the appropriate incubation period, the cells were stained with 0.4% crystal violet after formaline fixation, and the number of plaques were counted. The viral titters were then calculated, and expressed as PFU/ml. (Schmidtke et al., 1998).

rotavirus Wa strain Titers Using plaque assay
Antiviral Effect of Algal Extracts on infectious Adenovirus Type 40 using Cell culture-PCR (CC-PCR) technique

It was done according to Esawy et al, 2011, Abdo et al, 2012, Briefly, Non toxic dilutions were mixed (100 μl) with 100 μl of different doses of adenovirus type 40 1X10^6, 1X10^5, 1X10^4 Cell Culture-PCR units/ milliliter (CC-PCR units/ml). The mixture was incubated for 1/2 hr in 37°C. The inoculation of (100 μl) 10 fold dilutions of treated and untreated adenovirus was carried out into Hep 2 cell line in 12 multi well- plates. After 1 hr of incubation for adsorption at 37°C, 1 ml of media (Dulbecco’s Modified Eagle Medium, Gibco- BRL (DMEM) was added to each well. After one week incubation at 37°C, three times freezing and thawing for treated plates were done. Nested PCR was performed for confirmation of adenovirus (presence/ absence) in each well According to Puig et al., 1994. The external primers hexAA1885 (5-GCCCGAGTGGTCTTACATGCACATC-3) and hexAA1913 (5-CAGCACGGCGGATGTGCTAAAGT-3) were used in the first 30 cycles of amplification, and 1 μl was further added to a new batch of 50 μl of PCR mixture containing each nested primer pair, nehexAA1893 (5-GCCACCGAGACGTACTTCAGCCTG-3) and nehexAA1905 (5- TTGTACGAGTACGCGGTATCCTCGCGGTC-3) at 0.16 μM in a new 30 cycles amplification. An adenovirus CC-PCR unit is defined as the reciprocal endpoint dilution detectable by CC- PCR. The detection limit of this assay is 1 x 10^1 CC- PCR units/ml.

Antiviral Effect of Algal Extracts on infectious astrovirus Type 1 using Cell culture-RT-PCR (CC-RT-PCR) technique

Non toxic dilutions were mixed (100 μl) with 100 μl of different doses of astrovirus type 1 1X10^5, 1X10^4, 1X10^3 Cell Culture RT-PCR units/ milliliter (CC-RT-PCR units/ml). The mixture was incubated for 1/2 hr in 37°C. The inoculation of (100 μl) 10 fold dilutions of treated and untreated astrovirus was carried out into CaCo-2 cell line in 12 multi well- plates. Astrovirus copy numbers for treated and untreated samples were calculated as numbers of cell culture RT-PCR units by following a previously described procedure based on combined infection of cultured CaCo-2 cell monolayers and RT-PCR with sets of primers A1/A2 for astrovirus genogroups A. An astrovirus CC-RT-PCR unit is defined as the reciprocal endpoint dilution detectable by CC-RT-PCR. The detection limit of this assay is 1 x 10^1 CC-RT-PCR units/ml (Abad et al., 1997, El-Senousy et al., 2007).

Antimicrobial susceptibility testing methods

It was done according to disc diffusion method (CLSI, 2008, Walker, 2007) to study the antimicrobial effect against Escherichia coli, Salmonella typhi, Staphylococcus aureus, Enterococcus faecalis, and Candida albicans.

RESULTS AND DISCUSSION

In this study the different types of tested cell lines showed different sensitivities to toxic materials in the ethanol extract of Spirulina platensis. The non toxic dose ranged from 1.6 to 1.9 mg/ml (Table 1) which means no big difference between the different cell lines. Different nature of different cell lines buffalo green monkey kidney cells (BGM), Hep-2 derived from human, epidermoid larynx carcinoma, MA104 , derived from embryonic Rhesus Monkey kidney tissue. and CaCo-2 heterogeneous human epithelial colorectal adenocarcinoma cells may explain the different capabilities against toxic materials. In the study of Abdo and Co-workers (2012), the non toxic concentration for methanol and water extracts of Spirulina platensis, Anabaena sphaerica, Chroococcus turgidus, Oscillatoria limnetica, and Cosmarium leave in Hep-2 cell line was 2mg/ml.

Table 1: Non toxic doses of Spirulina platensis extract on Hep2, BGM, CaCo2, and MA104 cell lines.

<table>
<thead>
<tr>
<th>Non toxic dose (mg/ml)</th>
<th>Cell line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>Hep-2</td>
</tr>
<tr>
<td>1.9</td>
<td>BGM</td>
</tr>
<tr>
<td>1.6</td>
<td>CaCo2</td>
</tr>
<tr>
<td>1.6</td>
<td>MA104</td>
</tr>
</tbody>
</table>

Table 2: Antiviral effect of non toxic doses from Spirulina platensis.

<table>
<thead>
<tr>
<th>Tested virus</th>
<th>Initial viral titre</th>
<th>Final viral titre</th>
<th>% of reduction</th>
<th>Mean % of reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus type 7*</td>
<td>1X10^5</td>
<td>4X10^5</td>
<td>60%</td>
<td>53.3%</td>
</tr>
<tr>
<td>Coxsackievirus B4*</td>
<td>1X10^5</td>
<td>3X10^5</td>
<td>70%</td>
<td>76.7%</td>
</tr>
<tr>
<td>Astrovirus type 1**</td>
<td>1X10^5</td>
<td>2X10^5</td>
<td>80%</td>
<td>50%</td>
</tr>
<tr>
<td>Rotavirus Wa strain*</td>
<td>1X10^5</td>
<td>5X10^5</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Adenovirus type 40***</td>
<td>1X10^5</td>
<td>5X10^5</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>

* Initial and final viral titre values are expressed as PFU/ml.
** Initial and final viral titre values are expressed as CC-RT-PCR units/ml
*** Initial and final viral titre values are expressed as CC-PCR units/ml

This is the first Egyptian report concerns with the antiviral activity of ethanol extract of Spirulina platensis against enteric viruses. The highest percentage of reduction was observed with astrovirus type 1 76.7% followed by Coxsackievirus B4 66.7%, rotavirus Wa strain 56.7%, adenovirus type 7 53.3%, and adenovirus type 40 50% (Table 2). This indicates the promising antiviral results of ethanol extract of Spirulina platensis against RNA and DNA enteric viruses. It also indicates the virucidal effect of the ethanol extract of Spirulina platensis on the tested viruses. Higher reduction of the infectious units of RNA viruses after treatment with Spirulina platensis ethanol extract than DNA viruses was observed.

The method used to test the antiviral effect of the ethanol extract of Spirulina platensis which depends on mixing the virus and the extract and inoculating them on cell cultures after an
incubation period and calculate the loss of infectious units of the tested viruses may indicate a virucidal effect of the tested materials on the viruses. In the study concerned with the effect of methanol extract of *Spirulina platensis* on adenovirus type 40, Considerable reduction of adenovirus type 40 titre in vitro (50%) was observed with methanol extract of *Spirulina platensis* (Abdo et al., 2012). They explained the antiviral effect by the presence of highly polar compounds in the methanol extract of *Spirulina platensis*. This explanation may be the reason of the virucidal effect of the ethanol extract of *Spirulina platensis* on enteric viruses in the present study. It may return to the presence of highly polar compounds in the ethanol extract of *Spirulina platensis*. The antiviral effect of the highly polar compounds was confirmed in the study of Corona et al., (2002), who reported that methanol extract of *Spirulina maxima* exhibited antiviral activity against HSV-2 with EC50 6.9 mg/ml, and IC50 0.13 mg/ml. *Spirulina maxima* methanol extract did not have a virucidal effect on herpes virus, inhibited herpes virus infection was explained by blocking the adsorption and penetration events of the viral replication cycle. According to the results obtained with the extracts from *Spirulina maxima* using solvents with different polarity, They suggested that the antiviral activity could be due to highly polar compounds present in methanol extract.

The work of Ayehunie et al., (1998), showed that water extract of *Spirulina platensis* inhibited human immunodeficiency virus type 1 (HIV-1) replication in human T-cell lines, peripheral blood mononuclear cells (PBMC). Extract concentrations ranging between 0.3 and 1.2 µg/ml reduced viral production by approximately 50% in PBMCs. The 50% inhibitory concentration (EC50) of extract for PBMC growth ranged between 0.8 and 3.1 mg/ml. Corona et al., (2002) also mentioned that hot water extract of *Spirulina maxima* inhibited the infection for adenovirus type 3 with a percentage less than 20%, with an IC50 5.2 mg/ml. They also reported that the hot water extract of *Spirulina maxima* showed no cell growth inhibition at concentrations below 2 mg/ml.

In this study we did not compare the effect of the ethanol extract of *Spirulina platensis* on enteric viruses with the effect of control drug because till now there is no drug against enteric viruses worldwide. So, it gives a great importance to the studies of natural products and synthetic compounds as antiviral candidate compounds.

Although, there was no inhibition zones with *Escherichia coli* and *Salmonella typhi* (Gram negative bacteria of family Enterobacteriaceae) and *Staphylococcus aureus* (Gram positive bacteria, member of the Firmicutes) there were clear inhibition zones in case of *Enterococcus faecalis* and *Candida albicans* (Table 3). Both *Escherichia coli* and *Salmonella typhi*, are Gram negative bacteria of family Enterobacteriaceae which both of them were not affected by the ethanol extract of *Spirulina platensis*. Both *Staphylococcus aureus* and *Enterococcus faecalis* are Gram positive bacteria, member of phylum Firmicutes. Only *Enterococcus faecalis* was affected by the ethanol extract of *Spirulina platensis*. *Candida albicans* also was affected by the ethanol extract of *Spirulina platensis*. It is a diploid fungus that grows both as yeast and filamentous cells and a causal agent of opportunistic oral and genital infections in humans (Denfert and Hube, 2007). This confirms the biological activity of the ethanol extract of *Spirulina platensis*.

CONCLUSION

This study confirmed the biological activity of the ethanol extract of *Spirulina platensis* against non-enveloped RNA and DNA enteric viruses and also, *Enterococcus faecalis* and *Candida albicans*. Further studies are needed to confirm the biological activity of different fractions of *Spirulina platensis*.

REFERENCES

How to cite this article: