Evaluation of antibacterial potential of medicinal plant Spilanthes acmella Murr. and its in vitro raised callus against resistant organisms especially those harbouring bla genes

Noor Jahan 1,2*, Razia Khatoon 1,2, Siraj Ahmad 3, Anwar Shahzad 4
1Present address: Department of Microbiology, Era’s Lucknow Medical College and Hospital, Lucknow-226003, India.
2Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh-202002, India.
3Department of Community Medicine, Teerthanker Mahaveer Medical College and Research Centre, Teerthanker Mahaveer University, Moradabad-244001, India.
4Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh-202002, India.

ARTICLE INFO

Article history:
Received on: 07/09/2013
Revised on: 29/09/2013
Accepted on: 12/10/2013
Available online:

Key words:
Spilanthes acmella, in vitro raised callus, antibacterial activity, resistant bacteria harbouring bla genes.

ABSTRACT

Alcoholic extracts of stem of an endangered medicinal plant Spilanthes acmella and its in vitro raised callus were evaluated for antibacterial potential against various gram positive and gram negative bacteria including resistant isolates harbouring bla genes by agar well diffusion method. The alcoholic extract of parent plant as well as its callus showed good antibacterial activity against gram positive and gram negative bacteria and also efficiently controlled the growth of most of the resistant bacteria harbouring bla genes. Minimum inhibitory concentrations (MIC) of the extracts was determined by broth microdilution method. MIC against gram positive bacteria ranged from 12.0 to 49.0 µg/ml, while MIC against gram negative bacteria ranged from 1.53 to 12.0 µg/ml and MIC against resistant bacteria harbouring bla genes ranged from 6.1 to 98.0 µg/ml. The present study shows that extracts of Spilanthes acmella contain good antibacterial activity which can be used to obtain novel antibacterial compounds for the treatment of infectious diseases that otherwise pose problem of drug resistance to currently used antimicrobials. This is the first report of antibacterial activity of S. acmella through in vitro callus and also it’s potential against gram negative bacteria harbouring bla genes.

INTRODUCTION

Infectious diseases are the leading cause of morbidity and mortality throughout the world. Bacteria have evolved numerous defense mechanisms against antimicrobial agents. One such mechanism is acquisition of enzyme β-lactamase which is produced due to presence of bla genes in the chromosome or plasmid (extrachromosomal genetic material) of these organisms. β-lactamase hydrolyze the β-lactam ring of the broad specturm β-lactam antibiotics such as penicillins, cephalosporins and carbapenems, rendering them inactive. The clinical efficacy of many existing antibiotics is being threatened by the emergence of multidrug-resistant pathogens. Incidents of epidemics due to such drug resistant micro-organisms are now a common global problem posing enormous public health concerns.

* Corresponding Author
Dr. Noor Jahan, Department of Microbiology, Era’s Lucknow Medical College and Hospital, Lucknow, India. Email: drnoorj@rediffmail.com

Even though pharmaceutical industries have produced a number of new antimicrobial drugs in the last years, resistance to these drugs by micro-organisms is on rise. This is due to indiscriminate use of commercial antimicrobial drugs commonly used for the treatment of infectious diseases. Also majority of synthetic antibiotics are highly toxic at their optimum dosage level (Bush et al., 1995; Philippon et al., 2002; Bandow et al., 2003, Parekh and Chanda, 2008). This shows that there is a continuous and urgent need to discover new antimicrobial compounds with diverse chemical structures and novel mechanisms of action. Among many proposed strategies, a good understanding of plants offers the potential of developing potent broad spectrum antibiotics. There are several reports in the literature regarding the antimicrobial activity of crude extracts prepared from plants (El-Seedi et al., 2002; Rojas et al., 2003; Duraiapandian et al., 2006; Parekh and Chanda, 2007). Spilanthes acmella Murr. an endangered plant belongs to the family Asteraceae. It is commonly knownas ‘Akarkara’ or ‘toothache plant’.
Both the names denote the analgesic alkylamides the plant contains which is used to numb the toothache. It is a flowering herb native to Brazil, and is grown as an ornamental plant in various parts of the world. It is found throughout India, up to 5000 feet in the Himalayas and other mountains. Its growth peaks in November to March and requires frequent watering. The entire plant is medicinally active and non-toxic to humans. The Indian traditional healers use the flower heads of this plant in dental and gum care. It is one of the major ingredients in popular herbal tooth powders and paste.

It increases the flow of saliva (sialogogue) and is useful in fever especially during summers. Its root decoction has been used as a laxative and diuretic drug. The flower heads and roots have been used in the past for treatment of scabies, psoriasis, scurvy, toothache, infections of gums and throat, paralysis of tongue and as a remedy for stammering in children. Its extracts also possess properties which cause muscle relaxation and repair functional wrinkles, hence it is used in anti-age creams. The leaves and flower heads contain analgesic, antifungal, anthelmintic, antimalarial, antibacterial, and immunostimulating activity. This plant has also been used to cure dysentery and rheumatism. (Ratnasooriya et al., 2004; Chakraborty et al., 2004; Rani and Murty, 2006; Chandra et al., 2007; Barman et al., 2009; Prachayasittikul et al., 2013).

But unfortunately, these medicinal plants are disappearing at an alarming rate because of destruction of their natural habitats due to urbanization, indiscriminate deforestation and uncontrolled collection of plant materials for purposes other than medicinal use, thus making these plants endangered and threatened for extinction (Vanila et al., 2008). Through in vitro cultivation it would be possible to preserve and conserve these important endangered plant species and also in vitro cultivation of explants may be used to obtain phytotherapeutic compounds, even at places where the parent plant does not grow due to adverse atmospheric conditions (Shahid et al., 2009).

The present study was done to evaluate the antibacterial activity of medicinal plant S. acmella as well as its in vitro raised callus against an exhaustive range of bacteria, including both standard as well as clinical strains, with special reference to those possessing resistant bla genes responsible for β-lactamase production.

MATERIALS AND METHODS

Collection of plant materials

Stem segments were collected from 4 months old parent plant of Spilanthes acmella (Figure 1A) grown in the Medicinal Plant Nursery of Tamnaar, Raipur, Chhattisgarh, and nodal segments of this plant initially procured from Raipur were raised by in vitro callus induction, in the Department of Botany, Aligarh Muslim University, Aligarh and plant materials were taken from a 4 weeks old callus (Figure 1B).

IN VITRO CULTURE OF EXPLANTS FOR CALLUS INDUCTION

The nodal segments (explants) were washed under running tap water for 30 min and then washed thoroughly in sterile double-distilled water (DDW). These explants were then kept in 1% (w/v) Bavistin (Carbendazim Powder, BASF India Limited), a broad spectrum fungicide for 25 min, followed by thorough washing with 5% (v/v) Teepol (Qualigens Fine Chemicals, India), a liquid detergent for 15 min by continuous shaking method. The treated explants were washed in sterile DDW 3-4 times to remove the chemical inhibitors. The explants were then treated with 70% (v/v) ethanol for 30-40 sec, followed by rapid washing with sterile DDW and then surface sterilized by emersion in a freshly prepared solution of 0.1% (w/v) HgCl2 (Qualigens Fine Chemicals, India), for 4 min under laminar flow. Finally, the explants were washed 5-6 times with sterile DDW for 5 min to remove all traces of sterilants (Shahid et al., 2007). These sterile nodal segments were then inoculated in Murashige and Skoog’s (MS) medium (Murashige and Skoog, 1962) containing 5µM of TDZ (Thidiazuron) and 1µM of BA (6-Benzyladenine). The medium was prepared in culture tubes (25x150 mm, Borosil) and pH was adjusted at 5.8±0.2. The medium was solidified by adding 1% agar (HiMedia Lab. Ltd., India) and sterilized by autoclaving at 15 lb pressure per square inch, 121°C temperature for 15 min. The sterilized explants were then inoculated aseptically into the medium and incubated at 25 ± 2°C with relative humidity of 55 ± 5% and exposed to photocycle of 2,500 Lux intensity for 16 hrs. 4 weeks old callus was used for evaluation of the antimicrobial effect.

Preparation of plant extracts

The alcoholic extracts of the plant were tested for antibacterial activity. The extracts were prepared according to the method of Singh and Singh (2000) with some modifications as described below. To prepare alcoholic extracts, fresh stem segments (15 g) from parent plant were surface sterilized in 70% ethyl alcohol for 1 min and then washed 3 times with sterilized double distilled water (DDW). The callus was aseptically removed from the culture tube and all the plant materials, including callus,
were grounded separately with a sterilized pestle and mortar in 150 ml of 95% ethanol. The homogenized tissues were then centrifuged at 5000 rpm for 15 min. The supernatants were filtered and taken as alcoholic extracts which were immediately used for experimentation.

Bacteria Tested

The clinical bacterial strains included in our study were *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Streptococcus pyogenes*, *Enterococcus faecalis*, *Escherichia coli*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *Proteus mirabilis*, *Salmonella typhi*, *Shigella dysenteriae* type 1, and *Vibrio cholerae*, which were isolated from various clinical specimens in the Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, India.

In addition, resistant clinical isolates harbouring *bla* genes (identified by genetic characterization done earlier) were also included in our study. These strains were *Escherichia coli* (bla *ampC*), *Klebsiella* spp. (*bla* CTX), *Klebsiella* spp. (*bla* SHV), *Escherichia coli* (*bla* TEM) and *Escherichia coli* (*bla* *ampC*+SHV). The control bacterial species tested were *S. aureus* (ATCC 25923), *E. coli* (ATCC 25922) and *P. aeruginosa* (ATCC 27853) obtained from National Institute for Communicable Diseases (NICD), New Delhi, India. All the bacterial strains were grown on Blood agar or blood agar slants.

Antibacterial susceptibility testing

Antibacterial activity was determined using agar well diffusion method (Akinpelu, 2001) as per the guidelines of Clinical and Laboratory Standards Institute (formerly known as National Committee for Clinical Laboratory Standards, 2000). Mueller-Hinton Agar (M 173; HiMedia, India) and 5% sheep blood agar (for fastidious organisms such as Streptococci) were used for testing the antibacterial activity. The plates were lown cultured with inoculum of bacterial suspension containing 10⁶ cfu/ml with the help of sterile swabs and wells of 5mm diameter were made in each plate using a sterile borer. Plant extracts (20µl) were poured in the wells using micropipette. 20µl of 95% ethanol was used as negative control, whereas, antibacterial agent gentamycin (500µg/20µl) was used as positive control. The plates were kept overnight at 35 ± 2°C for 24 hours with their upper surface covered by sterile sealers. The lowest concentration of the extract that did not show any visible growth was considered MIC of the extract for that bacterial species. All the MIC experimentations were performed in duplicate.

RESULTS AND DISCUSSION

Antibacterial activities of alcoholic extracts of *S. acmella* as well as its *in vitro* raised callus against the tested bacterial species are shown in Table 1, 2 and 3. Negative control (ethanol) showed the zone of inhibition in the range of 0.00 to 8.67±0.33 mm. Positive control (gentamicin) showed the zone of inhibition in the range of 9.33±0.33 to 13.00±0.58 mm.

The alcoholic stem extract of *S. acmella* showed significant activity (P<0.05) against both gram positive and gram negative bacteria (Table 1 and 2). It showed significant activity against *Staphylococcus aureus* (P=0.010), *Staphylococcus epidermidis* (P=0.015), *Streptococcus pyogenes* (P=0.007), *Escherichia coli* (P=0.024), *Klebsiella pneumoniae* (P=0.027) and *Salmonella typhi* (P=0.017). It is interesting to note that the extract efficiently controlled the growth of pathogenic organisms responsible for causing various diseases like wound infection, stitch abscess, sore throat, urinary tract infection, diarrhea, pneumonia, enteric fever and nosocomial infections. The alcoholic extracts from parent plant also controlled the growth of most of the tested resistant bacteria harbouring *bla* genes (Table 3). It showed significant activity against *Escherichia coli* (*bla* *ampC*) (P=0.038), *Klebsiella* spp. (*bla* SHV) (P=0.027) and *Escherichia coli* (*bla* *ampC*+SHV) (P=0.044).
This shows that extracts derived from this plant could be used in future as novel antibacterial agents to treat infections caused by such resistant organisms, which otherwise pose problems of drug resistance to the currently used antimicrobial agents. Few studies have been done in the past to analyze the antibacterial potential of Spilanthes acmella. A study done by Prachayasittikul et al. (2009) showed that extracts from Spilanthes acmella gave significant antibacterial activity against Streptococcus pyogenes and Staphylococcus epidermidis, which supports our research findings. Another study done by Voravuthikunchai et al. (2005), tested the extracts of Spilanthes acmella against Salmonella typhi, but no activity was observed against this bacterium. This is in contrast to our study. The difference in results could be due to the different method of extraction used in their study as compared to that used in our study as well as variation in active metabolites present in plant extracts derived from different places. The alcoholic extract of in vitro cultivated callus of S. acmella also gave excellent antibacterial activity against both gram positive and gram negative bacteria (Table 1 and 2). It showed activity against Staphylococcus aureus (P=0.009), Staphylococcus epidermidis (P=0.012), Streptococcus pyogenes (P=0.003), Escherichia coli (P=0.012), Klebsiella pneumoniae (P=0.024), Pseudomonas aeruginosa (P=0.038) and Salmonella typhi (P=0.015). In addition, it also showed significant activity (P<0.05) against wide range of tested resistant organisms harbouring bla genes (Table 3). It showed significant activity against Escherichia coli (bla ampC) (P=0.015), Klebsiella spp. (bla CTX-M) (P=0.027), Klebsiella spp. (bla SHV) (P=0.024) and Escherichia coli (bla ampC-SHV) (P=0.038). The antibacterial activity of alcoholic extract of in vitro raised callus was found to be better in comparison to the activity of parent plant extract. This enhanced activity of in vitro raised callus could be due to nutritional enhancement and hormonal manipulations done in the culture medium. To the best of our knowledge this is the first study analyzing the antibacterial potential of in vitro raised callus and that too against resistant isolates harbouring bla genes, therefore, our findings could not be compared. MIC was determined for alcoholic extracts of in vitro raised callus. The MIC values against tested gram positive bacteria ranged from 12.0 to 49.0 µg/ml (Figure 2), while MIC values against tested gram negative bacteria ranged from 1.53 to 12.0 µg/ml (Figure 3) and MIC values against resistant bacteria harbouring bla genes ranged from 6.1 to 98.0 µg/ml (Figure 4).

Table 1: Antibacterial activity of alcoholic extracts of Spilanthes acmella and its in vitro raised callus against pathogenic gram-positive bacteria.

<table>
<thead>
<tr>
<th>Bacteria tested</th>
<th>Zone of inhibition (mm) ± SE</th>
<th>Alcohol extract</th>
<th>Alcoholic callus extract</th>
<th>Ethanol (negative control)</th>
<th>Gentamicin (positive control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus</td>
<td>13.00 ± 0.58<sup>a</sup></td>
<td>13.33 ± 0.33<sup>a</sup></td>
<td>7.33±0.33<sup>c</sup></td>
<td>11.67±0.33<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>13.33 ± 0.33<sup>a</sup></td>
<td>14.67 ± 0.33<sup>a</sup></td>
<td>8.33±0.33<sup>c</sup></td>
<td>11.33±0.33<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>14.33 ± 0.33<sup>a</sup></td>
<td>15.33 ± 0.67<sup>a</sup></td>
<td>8.67±0.33<sup>c</sup></td>
<td>13.00±0.58<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>20.00 ± 0.00<sup>a</sup></td>
<td>0.00 ± 0.00<sup>a</sup></td>
<td>7.33±0.33<sup>c</sup></td>
<td>9.67±0.33<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>S. aureus ATCC 29252</td>
<td>13.67 ± 0.33<sup>a</sup></td>
<td>14.00 ± 0.58<sup>a</sup></td>
<td>8.67±0.33<sup>c</sup></td>
<td>13.00±0.58<sup>c</sup></td>
<td></td>
</tr>
</tbody>
</table>

† = concentration of negative controls used in test i.e. 20 µl each of 95% ethanol and DDW. £ = concentration of gentamicin used in test i.e. 500 µg / 20 µl. Differences were assessed statistically using one way ANOVA followed by Tukey’s test. P<0.05 was considered as significant. The mean represented by same letter is not significantly different within the column.

Table 2: Antibacterial activity of alcoholic extracts of Spilanthes acmella and its in vitro raised callus against pathogenic gram-negative bacteria.

<table>
<thead>
<tr>
<th>Bacteria tested</th>
<th>Zone of inhibition (mm) ± SE</th>
<th>Alcohol extract</th>
<th>Alcoholic callus extract</th>
<th>Ethanol (negative control)</th>
<th>Gentamicin (positive control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>13.33±0.33<sup>a</sup></td>
<td>14.67±0.33<sup>a</sup></td>
<td>7.67±0.33<sup>c</sup></td>
<td>11.33±0.33<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>12.67±0.33<sup>a</sup></td>
<td>11.67±0.33<sup>a</sup></td>
<td>7.33±0.33<sup>d</sup></td>
<td>10.67±0.33<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>0.00±0.00<sup>a</sup></td>
<td>0.00±0.00<sup>a</sup></td>
<td>7.67±0.33<sup>d</sup></td>
<td>11.33±0.33<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>0.00±0.00<sup>a</sup></td>
<td>11.67±0.33<sup>a</sup></td>
<td>7.33±0.33<sup>d</sup></td>
<td>10.67±0.33<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>13.00±0.38<sup>a</sup></td>
<td>13.33±0.33<sup>a</sup></td>
<td>7.67±0.33<sup>d</sup></td>
<td>10.33±0.33<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td>Shigella dysenteriae type 1</td>
<td>0.00±0.00<sup>a</sup></td>
<td>0.00±0.00<sup>a</sup></td>
<td>7.67±0.33<sup>d</sup></td>
<td>10.33±0.33<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td>Vibrio cholerae</td>
<td>0.00±0.00<sup>a</sup></td>
<td>0.00±0.00<sup>a</sup></td>
<td>7.67±0.33<sup>d</sup></td>
<td>10.33±0.33<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td>E. coli ATCC 25922</td>
<td>13.33±0.33<sup>a</sup></td>
<td>13.67±0.33<sup>a</sup></td>
<td>8.67±0.33<sup>d</sup></td>
<td>12.67±0.33<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa ATCC 27853</td>
<td>12.33±0.33<sup>d</sup></td>
<td>12.67±0.33<sup>d</sup></td>
<td>8.33±0.33<sup>d</sup></td>
<td>11.33±0.33<sup>d</sup></td>
<td></td>
</tr>
</tbody>
</table>

† = concentration of negative controls used in test i.e. 20 µl each of 95% ethanol and DDW. £ = concentration of gentamicin used in test i.e. 500 µg / 20 µl. Diameter of zone of inhibition is a mean of triplicates ± SE (mm). Differences were assessed statistically using one way ANOVA followed by Tukey’s test. P<0.05 was considered as significant. The mean represented by same letter is not significantly different within the column.

Table 3: Antibacterial activity of alcoholic extracts of Spilanthes acmella and its in vitro raised callus against genetically characterized resistant isolates harbouring bla genes.

<table>
<thead>
<tr>
<th>Bacteria tested</th>
<th>Zone of inhibition (mm) ± SE</th>
<th>Alcohol extract</th>
<th>Alcoholic callus extract</th>
<th>Ethanol (negative control)</th>
<th>Gentamicin (positive control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli (bla ampC)</td>
<td>11.67±0.33<sup>a</sup></td>
<td>12.33±0.33<sup>a</sup></td>
<td>0.00±0.00<sup>a</sup></td>
<td>10.67±0.33<sup>ab</sup></td>
<td></td>
</tr>
<tr>
<td>Klebsiella spp. (bla CTX-M)</td>
<td>0.00±0.00<sup>a</sup></td>
<td>12.67±0.33<sup>a</sup></td>
<td>0.00±0.00<sup>a</sup></td>
<td>11.33±0.33<sup>ab</sup></td>
<td></td>
</tr>
<tr>
<td>Klebsiella spp. (bla SHV)</td>
<td>11.33±0.33<sup>b</sup></td>
<td>11.67±0.33<sup>b</sup></td>
<td>0.00±0.00<sup>a</sup></td>
<td>10.33±0.33<sup>ab</sup></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli (bla TEM)</td>
<td>0.00±0.00<sup>a</sup></td>
<td>0.00±0.00<sup>a</sup></td>
<td>0.00±0.00<sup>a</sup></td>
<td>9.33±0.33<sup>ab</sup></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli (bla ampC-SHV)</td>
<td>10.33±0.33<sup>b</sup></td>
<td>10.67±0.33<sup>b</sup></td>
<td>0.00±0.00<sup>a</sup></td>
<td>9.67±0.33<sup>ab</sup></td>
<td></td>
</tr>
</tbody>
</table>

β = Figure within the parenthesis denotes the bla genes harboured by the respective clinical strains of gram-negative bacteria. † = concentration of negative controls used in test i.e. 20 µl each of 95% ethanol and DDW. £ = concentration of gentamicin used in test i.e. 500 µg / 20 µl. Differences were assessed statistically using one way ANOVA followed by Tukey’s test. P<0.05 was considered as significant. The mean represented by same letter is not significantly different within the column.
Fig. 2: MIC determination of alcoholic extract of in vitro raised callus of *Spilanthes acmella* against tested gram positive bacteria.

Fig. 3: MIC determination of alcoholic extract of in vitro raised callus of *Spilanthes acmella* against tested gram negative bacteria.

Fig. 4: MIC determination of alcoholic extract of in vitro callus of *Spilanthes acmella* against resistant organisms harbouring bla genes.
CONCLUSION

In nutshell, extracts of Spilanthes acmella contain remarkable antibacterial potential and thus could be used in future to derive new antimicrobial compounds to treat infections caused by resistant organisms. Since herbal medicines are easily acceptable and quite affordable to the majority of the Indian population, it could act as an alternative medicine in treating various infections as synthetic antibiotics meant to treat such resistant organisms are quite costly and produce toxic effects at optimum dosage level.

As the extracts from in vitro raised callus also showed significant antibacterial potential, in vitro cultivation of the plant may be used to obtain phytotherapeutic compounds, especially at places where the parent plant does not grow naturally because of adverse atmospheric conditions. Also by in vitro cultivation we could preserve this threatened plant and prevent it from extinction.

REFERENCES

How to cite this article: